MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase23d Structured version   Visualization version   GIF version

Theorem ecase23d 1469
Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.)
Hypotheses
Ref Expression
ecase23d.1 (𝜑 → ¬ 𝜒)
ecase23d.2 (𝜑 → ¬ 𝜃)
ecase23d.3 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
ecase23d (𝜑𝜓)

Proof of Theorem ecase23d
StepHypRef Expression
1 ecase23d.1 . . 3 (𝜑 → ¬ 𝜒)
2 ecase23d.2 . . 3 (𝜑 → ¬ 𝜃)
3 ioran 981 . . 3 (¬ (𝜒𝜃) ↔ (¬ 𝜒 ∧ ¬ 𝜃))
41, 2, 3sylanbrc 581 . 2 (𝜑 → ¬ (𝜒𝜃))
5 ecase23d.3 . . . 4 (𝜑 → (𝜓𝜒𝜃))
6 3orass 1087 . . . 4 ((𝜓𝜒𝜃) ↔ (𝜓 ∨ (𝜒𝜃)))
75, 6sylib 217 . . 3 (𝜑 → (𝜓 ∨ (𝜒𝜃)))
87ord 862 . 2 (𝜑 → (¬ 𝜓 → (𝜒𝜃)))
94, 8mt3d 148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845  w3o 1083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085
This theorem is referenced by:  tz7.7  6400  wfrlem10OLD  8345  nolt02o  27648  nogt01o  27649  noresle  27650  nosupbnd1lem6  27666  nosupbnd2lem1  27668  noinfbnd1lem6  27681  sltmul2  28091  archiabllem2b  32925
  Copyright terms: Public domain W3C validator