| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecase23d | Structured version Visualization version GIF version | ||
| Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| ecase23d.1 | ⊢ (𝜑 → ¬ 𝜒) |
| ecase23d.2 | ⊢ (𝜑 → ¬ 𝜃) |
| ecase23d.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Ref | Expression |
|---|---|
| ecase23d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecase23d.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | ecase23d.2 | . . 3 ⊢ (𝜑 → ¬ 𝜃) | |
| 3 | ioran 986 | . . 3 ⊢ (¬ (𝜒 ∨ 𝜃) ↔ (¬ 𝜒 ∧ ¬ 𝜃)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . 2 ⊢ (𝜑 → ¬ (𝜒 ∨ 𝜃)) |
| 5 | ecase23d.3 | . . . 4 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 6 | 3orass 1090 | . . . 4 ⊢ ((𝜓 ∨ 𝜒 ∨ 𝜃) ↔ (𝜓 ∨ (𝜒 ∨ 𝜃))) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (𝜓 ∨ (𝜒 ∨ 𝜃))) |
| 8 | 7 | ord 865 | . 2 ⊢ (𝜑 → (¬ 𝜓 → (𝜒 ∨ 𝜃))) |
| 9 | 4, 8 | mt3d 148 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 ∨ w3o 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 |
| This theorem is referenced by: tz7.7 6410 wfrlem10OLD 8358 nolt02o 27740 nogt01o 27741 noresle 27742 nosupbnd1lem6 27758 nosupbnd2lem1 27760 noinfbnd1lem6 27773 sltmul2 28197 archiabllem2b 33203 |
| Copyright terms: Public domain | W3C validator |