MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase23d Structured version   Visualization version   GIF version

Theorem ecase23d 1469
Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.)
Hypotheses
Ref Expression
ecase23d.1 (𝜑 → ¬ 𝜒)
ecase23d.2 (𝜑 → ¬ 𝜃)
ecase23d.3 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
ecase23d (𝜑𝜓)

Proof of Theorem ecase23d
StepHypRef Expression
1 ecase23d.1 . . 3 (𝜑 → ¬ 𝜒)
2 ecase23d.2 . . 3 (𝜑 → ¬ 𝜃)
3 ioran 980 . . 3 (¬ (𝜒𝜃) ↔ (¬ 𝜒 ∧ ¬ 𝜃))
41, 2, 3sylanbrc 585 . 2 (𝜑 → ¬ (𝜒𝜃))
5 ecase23d.3 . . . 4 (𝜑 → (𝜓𝜒𝜃))
6 3orass 1086 . . . 4 ((𝜓𝜒𝜃) ↔ (𝜓 ∨ (𝜒𝜃)))
75, 6sylib 220 . . 3 (𝜑 → (𝜓 ∨ (𝜒𝜃)))
87ord 860 . 2 (𝜑 → (¬ 𝜓 → (𝜒𝜃)))
94, 8mt3d 150 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843  w3o 1082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084
This theorem is referenced by:  tz7.7  6220  wfrlem10  7967  archiabllem2b  30829  nolt02o  33203  noresle  33204  nosupbnd1lem6  33217  nosupbnd2lem1  33219
  Copyright terms: Public domain W3C validator