MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase23d Structured version   Visualization version   GIF version

Theorem ecase23d 1472
Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.)
Hypotheses
Ref Expression
ecase23d.1 (𝜑 → ¬ 𝜒)
ecase23d.2 (𝜑 → ¬ 𝜃)
ecase23d.3 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
ecase23d (𝜑𝜓)

Proof of Theorem ecase23d
StepHypRef Expression
1 ecase23d.1 . . 3 (𝜑 → ¬ 𝜒)
2 ecase23d.2 . . 3 (𝜑 → ¬ 𝜃)
3 ioran 981 . . 3 (¬ (𝜒𝜃) ↔ (¬ 𝜒 ∧ ¬ 𝜃))
41, 2, 3sylanbrc 582 . 2 (𝜑 → ¬ (𝜒𝜃))
5 ecase23d.3 . . . 4 (𝜑 → (𝜓𝜒𝜃))
6 3orass 1089 . . . 4 ((𝜓𝜒𝜃) ↔ (𝜓 ∨ (𝜒𝜃)))
75, 6sylib 217 . . 3 (𝜑 → (𝜓 ∨ (𝜒𝜃)))
87ord 861 . 2 (𝜑 → (¬ 𝜓 → (𝜒𝜃)))
94, 8mt3d 148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087
This theorem is referenced by:  tz7.7  6390  wfrlem10OLD  8321  nolt02o  27435  nogt01o  27436  noresle  27437  nosupbnd1lem6  27453  nosupbnd2lem1  27455  noinfbnd1lem6  27468  sltmul2  27863  archiabllem2b  32613
  Copyright terms: Public domain W3C validator