MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecase23d Structured version   Visualization version   GIF version

Theorem ecase23d 1475
Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.)
Hypotheses
Ref Expression
ecase23d.1 (𝜑 → ¬ 𝜒)
ecase23d.2 (𝜑 → ¬ 𝜃)
ecase23d.3 (𝜑 → (𝜓𝜒𝜃))
Assertion
Ref Expression
ecase23d (𝜑𝜓)

Proof of Theorem ecase23d
StepHypRef Expression
1 ecase23d.3 . . 3 (𝜑 → (𝜓𝜒𝜃))
2 3orass 1089 . . 3 ((𝜓𝜒𝜃) ↔ (𝜓 ∨ (𝜒𝜃)))
31, 2sylib 218 . 2 (𝜑 → (𝜓 ∨ (𝜒𝜃)))
4 ecase23d.1 . . 3 (𝜑 → ¬ 𝜒)
5 ecase23d.2 . . 3 (𝜑 → ¬ 𝜃)
6 ioran 985 . . 3 (¬ (𝜒𝜃) ↔ (¬ 𝜒 ∧ ¬ 𝜃))
74, 5, 6sylanbrc 583 . 2 (𝜑 → ¬ (𝜒𝜃))
83, 7olcnd 877 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087
This theorem is referenced by:  tz7.7  6378  wfrlem10OLD  8332  nolt02o  27659  nogt01o  27660  noresle  27661  nosupbnd1lem6  27677  nosupbnd2lem1  27679  noinfbnd1lem6  27692  sltmul2  28126  rexmul2  32731  archiabllem2b  33194
  Copyright terms: Public domain W3C validator