Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3netr3g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) |
Ref | Expression |
---|---|
3netr3g.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr3g.2 | ⊢ 𝐴 = 𝐶 |
3netr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3netr3g | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr3g.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 3netr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3netr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | neeq12i 3009 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐶 ≠ 𝐷) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |