| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | eqnetrd 2993 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | neeqtrrd 3000 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: f1ounsn 7250 infpssrlem4 10266 modsumfzodifsn 13916 mgm2nsgrplem4 18855 pmtr3ncomlem1 19410 isdrng2 20659 prmirredlem 21389 uvcf1 21708 dfac14lem 23511 i1fmullem 25602 fta1glem1 26080 fta1blem 26083 plydivlem4 26211 fta1lem 26222 cubic 26766 asinlem 26785 dchrn0 27168 lgsne0 27253 noextenddif 27587 noresle 27616 perpneq 28648 axlowdimlem14 28889 preimane 32601 cycpmco2lem6 33095 cycpmrn 33107 irngnminplynz 33709 cntnevol 34225 subfacp1lem5 35178 fvtransport 36027 poimirlem1 37622 poimirlem6 37627 poimirlem7 37628 dalem4 39666 cdleme35sn2aw 40459 cdleme39n 40467 cdleme41fva11 40478 trlcone 40729 hdmaprnlem3N 41851 sticksstones2 42142 expeq1d 42319 uvcn0 42537 flt0 42632 stoweidlem23 46028 gpg3kgrtriex 48084 gpgprismgr4cycllem7 48095 2zrngnmlid 48247 2zrngnmrid 48248 zlmodzxznm 48490 line2y 48748 |
| Copyright terms: Public domain | W3C validator |