| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | eqnetrd 2999 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | neeqtrrd 3006 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 |
| This theorem is referenced by: f1ounsn 7265 infpssrlem4 10320 modsumfzodifsn 13962 mgm2nsgrplem4 18899 pmtr3ncomlem1 19454 isdrng2 20703 prmirredlem 21433 uvcf1 21752 dfac14lem 23555 i1fmullem 25647 fta1glem1 26125 fta1blem 26128 plydivlem4 26256 fta1lem 26267 cubic 26811 asinlem 26830 dchrn0 27213 lgsne0 27298 noextenddif 27632 noresle 27661 perpneq 28693 axlowdimlem14 28934 preimane 32648 cycpmco2lem6 33142 cycpmrn 33154 irngnminplynz 33746 cntnevol 34259 subfacp1lem5 35206 fvtransport 36050 poimirlem1 37645 poimirlem6 37650 poimirlem7 37651 dalem4 39684 cdleme35sn2aw 40477 cdleme39n 40485 cdleme41fva11 40496 trlcone 40747 hdmaprnlem3N 41869 sticksstones2 42160 expeq1d 42373 uvcn0 42565 flt0 42660 stoweidlem23 46052 gpg3kgrtriex 48091 gpgprismgr4cycllem7 48100 2zrngnmlid 48230 2zrngnmrid 48231 zlmodzxznm 48473 line2y 48735 |
| Copyright terms: Public domain | W3C validator |