![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3006 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3013 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ne 2939 |
This theorem is referenced by: f1ounsn 7292 infpssrlem4 10344 modsumfzodifsn 13982 mgm2nsgrplem4 18947 pmtr3ncomlem1 19506 isdrng2 20760 prmirredlem 21501 uvcf1 21830 dfac14lem 23641 i1fmullem 25743 fta1glem1 26222 fta1blem 26225 plydivlem4 26353 fta1lem 26364 cubic 26907 asinlem 26926 dchrn0 27309 lgsne0 27394 noextenddif 27728 noresle 27757 perpneq 28737 axlowdimlem14 28985 preimane 32687 cycpmco2lem6 33134 cycpmrn 33146 irngnminplynz 33720 cntnevol 34209 subfacp1lem5 35169 fvtransport 36014 poimirlem1 37608 poimirlem6 37613 poimirlem7 37614 dalem4 39648 cdleme35sn2aw 40441 cdleme39n 40449 cdleme41fva11 40460 trlcone 40711 hdmaprnlem3N 41833 sticksstones2 42129 expeq1d 42338 uvcn0 42529 flt0 42624 stoweidlem23 45979 2zrngnmlid 48099 2zrngnmrid 48100 zlmodzxznm 48343 line2y 48605 |
Copyright terms: Public domain | W3C validator |