![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3006 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3013 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-ne 2939 |
This theorem is referenced by: infpssrlem4 10303 modsumfzodifsn 13913 mgm2nsgrplem4 18838 pmtr3ncomlem1 19382 isdrng2 20514 prmirredlem 21243 uvcf1 21566 dfac14lem 23341 i1fmullem 25443 fta1glem1 25918 fta1blem 25921 plydivlem4 26045 fta1lem 26056 cubic 26590 asinlem 26609 dchrn0 26989 lgsne0 27074 noextenddif 27407 noresle 27436 perpneq 28232 axlowdimlem14 28480 preimane 32162 cycpmco2lem6 32560 cycpmrn 32572 irngnminplynz 33060 cntnevol 33524 subfacp1lem5 34473 fvtransport 35308 poimirlem1 36792 poimirlem6 36797 poimirlem7 36798 dalem4 38839 cdleme35sn2aw 39632 cdleme39n 39640 cdleme41fva11 39651 trlcone 39902 hdmaprnlem3N 41024 sticksstones2 41269 uvcn0 41414 flt0 41681 stoweidlem23 45037 2zrngnmlid 46935 2zrngnmrid 46936 zlmodzxznm 47265 line2y 47528 |
Copyright terms: Public domain | W3C validator |