![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3014 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3021 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: infpssrlem4 10375 modsumfzodifsn 13995 mgm2nsgrplem4 18956 pmtr3ncomlem1 19515 isdrng2 20765 prmirredlem 21506 uvcf1 21835 dfac14lem 23646 i1fmullem 25748 fta1glem1 26227 fta1blem 26230 plydivlem4 26356 fta1lem 26367 cubic 26910 asinlem 26929 dchrn0 27312 lgsne0 27397 noextenddif 27731 noresle 27760 perpneq 28740 axlowdimlem14 28988 preimane 32688 cycpmco2lem6 33124 cycpmrn 33136 irngnminplynz 33705 cntnevol 34192 subfacp1lem5 35152 fvtransport 35996 poimirlem1 37581 poimirlem6 37586 poimirlem7 37587 dalem4 39622 cdleme35sn2aw 40415 cdleme39n 40423 cdleme41fva11 40434 trlcone 40685 hdmaprnlem3N 41807 sticksstones2 42104 expeq1d 42311 uvcn0 42497 flt0 42592 stoweidlem23 45944 2zrngnmlid 47978 2zrngnmrid 47979 zlmodzxznm 48226 line2y 48489 |
Copyright terms: Public domain | W3C validator |