Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3010 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3017 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: infpssrlem4 9993 modsumfzodifsn 13592 mgm2nsgrplem4 18475 pmtr3ncomlem1 18996 isdrng2 19916 prmirredlem 20606 uvcf1 20909 dfac14lem 22676 i1fmullem 24763 fta1glem1 25235 fta1blem 25238 plydivlem4 25361 fta1lem 25372 cubic 25904 asinlem 25923 dchrn0 26303 lgsne0 26388 perpneq 26979 axlowdimlem14 27226 preimane 30909 cycpmco2lem6 31300 cycpmrn 31312 cntnevol 32096 subfacp1lem5 33046 noextenddif 33798 noresle 33827 fvtransport 34261 poimirlem1 35705 poimirlem6 35710 poimirlem7 35711 dalem4 37606 cdleme35sn2aw 38399 cdleme39n 38407 cdleme41fva11 38418 trlcone 38669 hdmaprnlem3N 39791 sticksstones2 40031 uvcn0 40190 flt0 40390 stoweidlem23 43454 2zrngnmlid 45395 2zrngnmrid 45396 zlmodzxznm 45726 line2y 45989 |
Copyright terms: Public domain | W3C validator |