| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | eqnetrd 2996 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | neeqtrrd 3003 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: f1ounsn 7214 infpssrlem4 10206 modsumfzodifsn 13855 mgm2nsgrplem4 18833 pmtr3ncomlem1 19389 isdrng2 20662 prmirredlem 21413 uvcf1 21733 dfac14lem 23535 i1fmullem 25625 fta1glem1 26103 fta1blem 26106 plydivlem4 26234 fta1lem 26245 cubic 26789 asinlem 26808 dchrn0 27191 lgsne0 27276 noextenddif 27610 noresle 27639 perpneq 28695 axlowdimlem14 28937 preimane 32656 cycpmco2lem6 33109 cycpmrn 33121 mplmulmvr 33592 irngnminplynz 33748 cntnevol 34264 subfacp1lem5 35251 fvtransport 36099 poimirlem1 37684 poimirlem6 37689 poimirlem7 37690 dalem4 39787 cdleme35sn2aw 40580 cdleme39n 40588 cdleme41fva11 40599 trlcone 40850 hdmaprnlem3N 41972 sticksstones2 42263 expeq1d 42445 uvcn0 42663 flt0 42758 stoweidlem23 46148 gpg3kgrtriex 48216 gpgprismgr4cycllem7 48228 2zrngnmlid 48382 2zrngnmrid 48383 zlmodzxznm 48625 line2y 48883 |
| Copyright terms: Public domain | W3C validator |