| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | eqnetrd 2992 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | neeqtrrd 2999 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: f1ounsn 7247 infpssrlem4 10259 modsumfzodifsn 13909 mgm2nsgrplem4 18848 pmtr3ncomlem1 19403 isdrng2 20652 prmirredlem 21382 uvcf1 21701 dfac14lem 23504 i1fmullem 25595 fta1glem1 26073 fta1blem 26076 plydivlem4 26204 fta1lem 26215 cubic 26759 asinlem 26778 dchrn0 27161 lgsne0 27246 noextenddif 27580 noresle 27609 perpneq 28641 axlowdimlem14 28882 preimane 32594 cycpmco2lem6 33088 cycpmrn 33100 irngnminplynz 33702 cntnevol 34218 subfacp1lem5 35171 fvtransport 36020 poimirlem1 37615 poimirlem6 37620 poimirlem7 37621 dalem4 39659 cdleme35sn2aw 40452 cdleme39n 40460 cdleme41fva11 40471 trlcone 40722 hdmaprnlem3N 41844 sticksstones2 42135 expeq1d 42312 uvcn0 42530 flt0 42625 stoweidlem23 46021 gpg3kgrtriex 48080 gpgprismgr4cycllem7 48091 2zrngnmlid 48243 2zrngnmrid 48244 zlmodzxznm 48486 line2y 48744 |
| Copyright terms: Public domain | W3C validator |