MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr4d Structured version   Visualization version   GIF version

Theorem 3netr4d 3019
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.)
Hypotheses
Ref Expression
3netr4d.1 (𝜑𝐴𝐵)
3netr4d.2 (𝜑𝐶 = 𝐴)
3netr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3netr4d (𝜑𝐶𝐷)

Proof of Theorem 3netr4d
StepHypRef Expression
1 3netr4d.2 . . 3 (𝜑𝐶 = 𝐴)
2 3netr4d.1 . . 3 (𝜑𝐴𝐵)
31, 2eqnetrd 3009 . 2 (𝜑𝐶𝐵)
4 3netr4d.3 . 2 (𝜑𝐷 = 𝐵)
53, 4neeqtrrd 3016 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-ne 2942
This theorem is referenced by:  infpssrlem4  10301  modsumfzodifsn  13909  mgm2nsgrplem4  18802  pmtr3ncomlem1  19341  isdrng2  20371  prmirredlem  21042  uvcf1  21347  dfac14lem  23121  i1fmullem  25211  fta1glem1  25683  fta1blem  25686  plydivlem4  25809  fta1lem  25820  cubic  26354  asinlem  26373  dchrn0  26753  lgsne0  26838  noextenddif  27171  noresle  27200  perpneq  27965  axlowdimlem14  28213  preimane  31895  cycpmco2lem6  32290  cycpmrn  32302  irngnminplynz  32771  cntnevol  33226  subfacp1lem5  34175  fvtransport  35004  poimirlem1  36489  poimirlem6  36494  poimirlem7  36495  dalem4  38536  cdleme35sn2aw  39329  cdleme39n  39337  cdleme41fva11  39348  trlcone  39599  hdmaprnlem3N  40721  sticksstones2  40963  uvcn0  41112  flt0  41379  stoweidlem23  44739  2zrngnmlid  46847  2zrngnmrid  46848  zlmodzxznm  47178  line2y  47441
  Copyright terms: Public domain W3C validator