| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | eqnetrd 2995 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | neeqtrrd 3002 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: f1ounsn 7206 infpssrlem4 10197 modsumfzodifsn 13851 mgm2nsgrplem4 18829 pmtr3ncomlem1 19386 isdrng2 20659 prmirredlem 21410 uvcf1 21730 dfac14lem 23533 i1fmullem 25623 fta1glem1 26101 fta1blem 26104 plydivlem4 26232 fta1lem 26243 cubic 26787 asinlem 26806 dchrn0 27189 lgsne0 27274 noextenddif 27608 noresle 27637 perpneq 28693 axlowdimlem14 28934 preimane 32650 cycpmco2lem6 33098 cycpmrn 33110 irngnminplynz 33723 cntnevol 34239 subfacp1lem5 35226 fvtransport 36072 poimirlem1 37667 poimirlem6 37672 poimirlem7 37673 dalem4 39710 cdleme35sn2aw 40503 cdleme39n 40511 cdleme41fva11 40522 trlcone 40773 hdmaprnlem3N 41895 sticksstones2 42186 expeq1d 42363 uvcn0 42581 flt0 42676 stoweidlem23 46067 gpg3kgrtriex 48126 gpgprismgr4cycllem7 48138 2zrngnmlid 48292 2zrngnmrid 48293 zlmodzxznm 48535 line2y 48793 |
| Copyright terms: Public domain | W3C validator |