| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | eqnetrd 2992 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 5 | 3, 4 | neeqtrrd 2999 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: f1ounsn 7213 infpssrlem4 10219 modsumfzodifsn 13869 mgm2nsgrplem4 18813 pmtr3ncomlem1 19370 isdrng2 20646 prmirredlem 21397 uvcf1 21717 dfac14lem 23520 i1fmullem 25611 fta1glem1 26089 fta1blem 26092 plydivlem4 26220 fta1lem 26231 cubic 26775 asinlem 26794 dchrn0 27177 lgsne0 27262 noextenddif 27596 noresle 27625 perpneq 28677 axlowdimlem14 28918 preimane 32627 cycpmco2lem6 33086 cycpmrn 33098 irngnminplynz 33681 cntnevol 34197 subfacp1lem5 35159 fvtransport 36008 poimirlem1 37603 poimirlem6 37608 poimirlem7 37609 dalem4 39647 cdleme35sn2aw 40440 cdleme39n 40448 cdleme41fva11 40459 trlcone 40710 hdmaprnlem3N 41832 sticksstones2 42123 expeq1d 42300 uvcn0 42518 flt0 42613 stoweidlem23 46008 gpg3kgrtriex 48077 gpgprismgr4cycllem7 48089 2zrngnmlid 48243 2zrngnmrid 48244 zlmodzxznm 48486 line2y 48744 |
| Copyright terms: Public domain | W3C validator |