Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3011 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3018 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: infpssrlem4 10062 modsumfzodifsn 13664 mgm2nsgrplem4 18560 pmtr3ncomlem1 19081 isdrng2 20001 prmirredlem 20694 uvcf1 20999 dfac14lem 22768 i1fmullem 24858 fta1glem1 25330 fta1blem 25333 plydivlem4 25456 fta1lem 25467 cubic 25999 asinlem 26018 dchrn0 26398 lgsne0 26483 perpneq 27075 axlowdimlem14 27323 preimane 31007 cycpmco2lem6 31398 cycpmrn 31410 cntnevol 32196 subfacp1lem5 33146 noextenddif 33871 noresle 33900 fvtransport 34334 poimirlem1 35778 poimirlem6 35783 poimirlem7 35784 dalem4 37679 cdleme35sn2aw 38472 cdleme39n 38480 cdleme41fva11 38491 trlcone 38742 hdmaprnlem3N 39864 sticksstones2 40103 uvcn0 40265 flt0 40474 stoweidlem23 43564 2zrngnmlid 45507 2zrngnmrid 45508 zlmodzxznm 45838 line2y 46101 |
Copyright terms: Public domain | W3C validator |