![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3009 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3016 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ne 2942 |
This theorem is referenced by: infpssrlem4 10301 modsumfzodifsn 13909 mgm2nsgrplem4 18802 pmtr3ncomlem1 19341 isdrng2 20371 prmirredlem 21042 uvcf1 21347 dfac14lem 23121 i1fmullem 25211 fta1glem1 25683 fta1blem 25686 plydivlem4 25809 fta1lem 25820 cubic 26354 asinlem 26373 dchrn0 26753 lgsne0 26838 noextenddif 27171 noresle 27200 perpneq 27965 axlowdimlem14 28213 preimane 31895 cycpmco2lem6 32290 cycpmrn 32302 irngnminplynz 32771 cntnevol 33226 subfacp1lem5 34175 fvtransport 35004 poimirlem1 36489 poimirlem6 36494 poimirlem7 36495 dalem4 38536 cdleme35sn2aw 39329 cdleme39n 39337 cdleme41fva11 39348 trlcone 39599 hdmaprnlem3N 40721 sticksstones2 40963 uvcn0 41112 flt0 41379 stoweidlem23 44739 2zrngnmlid 46847 2zrngnmrid 46848 zlmodzxznm 47178 line2y 47441 |
Copyright terms: Public domain | W3C validator |