MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3netr4d Structured version   Visualization version   GIF version

Theorem 3netr4d 3021
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.)
Hypotheses
Ref Expression
3netr4d.1 (𝜑𝐴𝐵)
3netr4d.2 (𝜑𝐶 = 𝐴)
3netr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3netr4d (𝜑𝐶𝐷)

Proof of Theorem 3netr4d
StepHypRef Expression
1 3netr4d.2 . . 3 (𝜑𝐶 = 𝐴)
2 3netr4d.1 . . 3 (𝜑𝐴𝐵)
31, 2eqnetrd 3011 . 2 (𝜑𝐶𝐵)
4 3netr4d.3 . 2 (𝜑𝐷 = 𝐵)
53, 4neeqtrrd 3018 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-ne 2944
This theorem is referenced by:  infpssrlem4  10062  modsumfzodifsn  13664  mgm2nsgrplem4  18560  pmtr3ncomlem1  19081  isdrng2  20001  prmirredlem  20694  uvcf1  20999  dfac14lem  22768  i1fmullem  24858  fta1glem1  25330  fta1blem  25333  plydivlem4  25456  fta1lem  25467  cubic  25999  asinlem  26018  dchrn0  26398  lgsne0  26483  perpneq  27075  axlowdimlem14  27323  preimane  31007  cycpmco2lem6  31398  cycpmrn  31410  cntnevol  32196  subfacp1lem5  33146  noextenddif  33871  noresle  33900  fvtransport  34334  poimirlem1  35778  poimirlem6  35783  poimirlem7  35784  dalem4  37679  cdleme35sn2aw  38472  cdleme39n  38480  cdleme41fva11  38491  trlcone  38742  hdmaprnlem3N  39864  sticksstones2  40103  uvcn0  40265  flt0  40474  stoweidlem23  43564  2zrngnmlid  45507  2zrngnmrid  45508  zlmodzxznm  45838  line2y  46101
  Copyright terms: Public domain W3C validator