![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3netr4d | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) (Proof shortened by Wolf Lammen, 21-Nov-2019.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3netr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | eqnetrd 3049 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
4 | 3netr4d.3 | . 2 ⊢ (𝜑 → 𝐷 = 𝐵) | |
5 | 3, 4 | neeqtrrd 3056 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ≠ wne 2982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-9 2089 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1760 df-cleq 2786 df-ne 2983 |
This theorem is referenced by: infpssrlem4 9563 modsumfzodifsn 13150 mgm2nsgrplem4 17835 pmtr3ncomlem1 18320 isdrng2 19190 prmirredlem 20310 uvcf1 20606 dfac14lem 21897 i1fmullem 23966 fta1glem1 24430 fta1blem 24433 plydivlem4 24556 fta1lem 24567 cubic 25096 asinlem 25115 dchrn0 25496 lgsne0 25581 perpneq 26170 axlowdimlem14 26412 preimane 30078 cntnevol 31060 subfacp1lem5 31995 noextenddif 32729 noresle 32754 fvtransport 33047 poimirlem1 34370 poimirlem6 34375 poimirlem7 34376 dalem4 36282 cdleme35sn2aw 37075 cdleme39n 37083 cdleme41fva11 37094 trlcone 37345 hdmaprnlem3N 38467 uvcn0 38628 stoweidlem23 41804 2zrngnmlid 43652 2zrngnmrid 43653 zlmodzxznm 43986 line2y 44177 |
Copyright terms: Public domain | W3C validator |