Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4an31 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) |
Ref | Expression |
---|---|
4an31.1 | ⊢ ((((𝜒 ∧ 𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
4an31 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an31 645 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | |
2 | 4an31.1 | . 2 ⊢ ((((𝜒 ∧ 𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylanb 581 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sineq0ALT 42557 |
Copyright terms: Public domain | W3C validator |