Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4an31 Structured version   Visualization version   GIF version

Theorem 4an31 42007
Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.)
Hypothesis
Ref Expression
4an31.1 ((((𝜒𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
4an31 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 4an31
StepHypRef Expression
1 an31 644 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜒𝜓) ∧ 𝜑))
2 4an31.1 . 2 ((((𝜒𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏)
31, 2sylanb 580 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  sineq0ALT  42446
  Copyright terms: Public domain W3C validator