MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an31 Structured version   Visualization version   GIF version

Theorem an31 645
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
Assertion
Ref Expression
an31 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜒𝜓) ∧ 𝜑))

Proof of Theorem an31
StepHypRef Expression
1 an13 644 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ (𝜒 ∧ (𝜓𝜑)))
2 anass 469 . 2 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
3 anass 469 . 2 (((𝜒𝜓) ∧ 𝜑) ↔ (𝜒 ∧ (𝜓𝜑)))
41, 2, 33bitr4i 303 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜒𝜓) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  euind  3659  reuind  3688  dchrelbas3  26386  lhpexle3  38026  4an31  42118  abciffcbatnabciffncba  44424
  Copyright terms: Public domain W3C validator