Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an31 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
Ref | Expression |
---|---|
an31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an13 644 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) | |
2 | anass 469 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
3 | anass 469 | . 2 ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) | |
4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: euind 3659 reuind 3688 dchrelbas3 26386 lhpexle3 38026 4an31 42118 abciffcbatnabciffncba 44424 |
Copyright terms: Public domain | W3C validator |