|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > an31 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| an31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | an13 647 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) | |
| 2 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 3 | anass 468 | . 2 ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) | |
| 4 | 1, 2, 3 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: euind 3730 reuind 3759 dchrelbas3 27282 lhpexle3 40014 4an31 44518 abciffcbatnabciffncba 46941 | 
| Copyright terms: Public domain | W3C validator |