Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4an4132 Structured version   Visualization version   GIF version

Theorem 4an4132 42157
Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.)
Hypothesis
Ref Expression
4an4132.1 ((((𝜃𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏)
Assertion
Ref Expression
4an4132 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 4an4132
StepHypRef Expression
1 simpr 486 . . 3 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜃)
2 simplr 767 . . 3 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜒)
31, 2jca 513 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → (𝜃𝜒))
4 simpllr 774 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓)
5 simplll 773 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)
6 4an4132.1 . 2 ((((𝜃𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏)
73, 4, 5, 6syl21anc 836 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  sineq0ALT  42595
  Copyright terms: Public domain W3C validator