Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sineq0ALT Structured version   Visualization version   GIF version

Theorem sineq0ALT 44957
Description: A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44957. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26566. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26566 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sineq0ALT (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0ALT
StepHypRef Expression
1 pire 26500 . . . . 5 π ∈ ℝ
2 pipos 26502 . . . . 5 0 < π
31, 2elrpii 13037 . . . 4 π ∈ ℝ+
4 2ne0 12370 . . . . . 6 2 ≠ 0
54a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ≠ 0)
6 2cn 12341 . . . . . . 7 2 ∈ ℂ
7 2re 12340 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (2 ∈ ℂ → 2 ∈ ℝ)
96, 8ax-mp 5 . . . . . 6 2 ∈ ℝ
109a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ∈ ℝ)
11 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
1211adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℂ)
136a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 2 ∈ ℂ)
1413, 11mulcld 11281 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
15 ax-icn 11214 . . . . . . . . . . . . . . 15 i ∈ ℂ
1615a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → i ∈ ℂ)
1713, 16, 11mul12d 11470 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = (i · (2 · 𝐴)))
1816, 11mulcld 11281 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
19182timesd 12509 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2017, 19eqtr3d 2779 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2120fveq2d 6910 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
22 efadd 16130 . . . . . . . . . . . 12 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2318, 18, 22syl2anc 584 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2421, 23eqtrd 2777 . . . . . . . . . 10 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2524adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
26 sinval 16158 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
27 id 22 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (sin‘𝐴) = 0)
2826, 27sylan9req 2798 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0)
29 efcl 16118 . . . . . . . . . . . . . . . . . 18 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
3018, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
31 negicn 11509 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -i ∈ ℂ)
3332, 11mulcld 11281 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
34 efcl 16118 . . . . . . . . . . . . . . . . . 18 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3630, 35subcld 11620 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
37 2mulicn 12489 . . . . . . . . . . . . . . . . 17 (2 · i) ∈ ℂ
3837a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
39 2muline0 12490 . . . . . . . . . . . . . . . . 17 (2 · i) ≠ 0
4039a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ≠ 0)
4136, 38, 40diveq0ad 12053 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4241adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4328, 42mpbid 232 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0)
4430, 35subeq0ad 11630 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4544adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4643, 45mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)))
4746oveq2d 7447 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
48 efadd 16130 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
4918, 33, 48syl2anc 584 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5049adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5147, 50eqtr4d 2780 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴))))
5216, 32, 11adddird 11286 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
5315negidi 11578 . . . . . . . . . . . . . . 15 (i + -i) = 0
5453oveq1i 7441 . . . . . . . . . . . . . 14 ((i + -i) · 𝐴) = (0 · 𝐴)
5552, 54eqtr3di 2792 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = (0 · 𝐴))
5611mul02d 11459 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
5755, 56eqtrd 2777 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
5857fveq2d 6910 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
5958adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
60 ef0 16127 . . . . . . . . . . 11 (exp‘0) = 1
6160a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘0) = 1)
6251, 59, 613eqtrd 2781 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = 1)
6325, 62eqtrd 2777 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = 1)
6463fveq2d 6910 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
65 abs1 15336 . . . . . . 7 (abs‘1) = 1
6664, 65eqtrdi 2793 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
67 absefib 16234 . . . . . . . 8 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
6867biimparc 479 . . . . . . 7 (((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈ ℝ)
6968ancoms 458 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈ ℝ)
7014, 66, 69syl2an2r 685 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (2 · 𝐴) ∈ ℝ)
71 mulre 15160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
72714animp1 44517 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 2 ∈ ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
73724an31 44518 . . . . 5 ((((2 ≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
745, 10, 12, 70, 73syl1111anc 841 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
753a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ+)
7674, 75modcld 13915 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
7776recnd 11289 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℂ)
7877sincld 16166 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) ∈ ℂ)
791a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ)
80 0re 11263 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
8180, 1, 2ltleii 11384 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ π
82 gt0ne0 11728 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℝ ∧ 0 < π) → π ≠ 0)
83823adant3 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((π ∈ ℝ ∧ 0 < π ∧ 0 ≤ π) → π ≠ 0)
84833com23 1127 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 0 ≤ π ∧ 0 < π) → π ≠ 0)
851, 81, 2, 84mp3an 1463 . . . . . . . . . . . . . . . . . . . 20 π ≠ 0
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ≠ 0)
8774, 79, 86redivcld 12095 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
8887flcld 13838 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
8988znegcld 12724 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
90 abssinper 26563 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9190eqcomd 2743 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9291ex 412 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9392adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9489, 93mpd 15 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9588zcnd 12723 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
9695negcld 11607 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℂ)
971recni 11275 . . . . . . . . . . . . . . . . . . . . 21 π ∈ ℂ
9897a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℂ)
9996, 98mulcld 11281 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) ∈ ℂ)
10098, 95mulcld 11281 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
101100negcld 11607 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) ∈ ℂ)
10295, 98mulneg1d 11716 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
10395, 98mulcomd 11282 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((⌊‘(𝐴 / π)) · π) = (π · (⌊‘(𝐴 / π))))
104103negeqd 11502 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -((⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
105102, 104eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
106 oveq2 7439 . . . . . . . . . . . . . . . . . . . . 21 ((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
107106ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
1081074an4132 44519 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π)))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
10912, 99, 101, 105, 108syl1111anc 841 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
11012, 100negsubd 11626 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
111109, 110eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
112111fveq2d 6910 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
113112fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11494, 113eqtrd 2777 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
115 modval 13911 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
116115fveq2d 6910 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
117116fveq2d 6910 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
1183, 117mpan2 691 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11974, 118syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
120114, 119eqtr4d 2780 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 mod π))))
12127fveq2d 6910 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = (abs‘0))
122 abs0 15324 . . . . . . . . . . . . . . 15 (abs‘0) = 0
123121, 122eqtrdi 2793 . . . . . . . . . . . . . 14 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = 0)
124123adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = 0)
125120, 124eqtr3d 2779 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
12678, 125abs00d 15485 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = 0)
127 notnotb 315 . . . . . . . . . . . . 13 ((sin‘(𝐴 mod π)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod π)) = 0)
128127bicomi 224 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 ↔ (sin‘(𝐴 mod π)) = 0)
129 ltne 11358 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → (sin‘(𝐴 mod π)) ≠ 0)
130129neneqd 2945 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → ¬ (sin‘(𝐴 mod π)) = 0)
131130expcom 413 . . . . . . . . . . . . . 14 (0 < (sin‘(𝐴 mod π)) → (0 ∈ ℝ → ¬ (sin‘(𝐴 mod π)) = 0))
13280, 131mpi 20 . . . . . . . . . . . . 13 (0 < (sin‘(𝐴 mod π)) → ¬ (sin‘(𝐴 mod π)) = 0)
133132con3i 154 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
134128, 133sylbir 235 . . . . . . . . . . 11 ((sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
135126, 134syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (sin‘(𝐴 mod π)))
136 sinq12gt0 26549 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
137135, 136nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (𝐴 mod π) ∈ (0(,)π))
13880rexri 11319 . . . . . . . . . . 11 0 ∈ ℝ*
1391rexri 11319 . . . . . . . . . . 11 π ∈ ℝ*
140 elioo2 13428 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
141138, 139, 140mp2an 692 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
142141notbii 320 . . . . . . . . 9 (¬ (𝐴 mod π) ∈ (0(,)π) ↔ ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
143137, 142sylib 218 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
144 3anan12 1096 . . . . . . . . 9 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
145144notbii 320 . . . . . . . 8 (¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
146143, 145sylib 218 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
147 modlt 13920 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
148147ancoms 458 . . . . . . . . 9 ((π ∈ ℝ+𝐴 ∈ ℝ) → (𝐴 mod π) < π)
1493, 74, 148sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
15076, 149jca 511 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
151 not12an2impnot1 44588 . . . . . . 7 ((¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) → ¬ 0 < (𝐴 mod π))
152146, 150, 151syl2anc 584 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
153 modge0 13919 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
154153ancoms 458 . . . . . . . 8 ((π ∈ ℝ+𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod π))
1553, 74, 154sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
156 leloe 11347 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
157156biimp3a 1471 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
158157idiALT 44498 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
15980, 76, 155, 158mp3an2i 1468 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
160 pm2.53 852 . . . . . . . 8 ((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
161160imp 406 . . . . . . 7 (((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) ∧ ¬ 0 < (𝐴 mod π)) → 0 = (𝐴 mod π))
162161ancoms 458 . . . . . 6 ((¬ 0 < (𝐴 mod π) ∧ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) → 0 = (𝐴 mod π))
163152, 159, 162syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
164163eqcomd 2743 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
165 mod0 13916 . . . . . 6 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
166165biimp3a 1471 . . . . 5 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1671663com12 1124 . . . 4 ((π ∈ ℝ+𝐴 ∈ ℝ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1683, 74, 164, 167mp3an2i 1468 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
169168ex 412 . 2 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (𝐴 / π) ∈ ℤ))
17097a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ∈ ℂ)
17185a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ≠ 0)
17211, 170, 171divcan1d 12044 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
173172fveq2d 6910 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
174 id 22 . . . . 5 ((𝐴 / π) ∈ ℤ → (𝐴 / π) ∈ ℤ)
175 sinkpi 26564 . . . . 5 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
176174, 175syl 17 . . . 4 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
177173, 176sylan9req 2798 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
178177ex 412 . 2 (𝐴 ∈ ℂ → ((𝐴 / π) ∈ ℤ → (sin‘𝐴) = 0))
179169, 178impbid 212 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  cz 12613  +crp 13034  (,)cioo 13387  cfl 13830   mod cmo 13909  abscabs 15273  expce 16097  sincsin 16099  πcpi 16102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator