Proof of Theorem sineq0ALT
Step | Hyp | Ref
| Expression |
1 | | pire 25520 |
. . . . 5
⊢ π
∈ ℝ |
2 | | pipos 25522 |
. . . . 5
⊢ 0 <
π |
3 | 1, 2 | elrpii 12662 |
. . . 4
⊢ π
∈ ℝ+ |
4 | | 2ne0 12007 |
. . . . . 6
⊢ 2 ≠
0 |
5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 2
≠ 0) |
6 | | 2cn 11978 |
. . . . . . 7
⊢ 2 ∈
ℂ |
7 | | 2re 11977 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (2 ∈
ℂ → 2 ∈ ℝ) |
9 | 6, 8 | ax-mp 5 |
. . . . . 6
⊢ 2 ∈
ℝ |
10 | 9 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 2
∈ ℝ) |
11 | | id 22 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
𝐴 ∈
ℂ) |
13 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → 2 ∈
ℂ) |
14 | 13, 11 | mulcld 10926 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (2
· 𝐴) ∈
ℂ) |
15 | | ax-icn 10861 |
. . . . . . . . . . . . . . 15
⊢ i ∈
ℂ |
16 | 15 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → i ∈
ℂ) |
17 | 13, 16, 11 | mul12d 11114 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (2
· (i · 𝐴)) =
(i · (2 · 𝐴))) |
18 | 16, 11 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) ∈
ℂ) |
19 | 18 | 2timesd 12146 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (2
· (i · 𝐴)) =
((i · 𝐴) + (i
· 𝐴))) |
20 | 17, 19 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (i
· (2 · 𝐴)) =
((i · 𝐴) + (i
· 𝐴))) |
21 | 20 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴)))) |
22 | | efadd 15731 |
. . . . . . . . . . . 12
⊢ (((i
· 𝐴) ∈ ℂ
∧ (i · 𝐴) ∈
ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐴)))) |
23 | 18, 18, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(exp‘((i · 𝐴)
+ (i · 𝐴))) =
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴)))) |
24 | 21, 23 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐴)))) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐴)))) |
26 | | sinval 15759 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
27 | | id 22 |
. . . . . . . . . . . . . . 15
⊢
((sin‘𝐴) = 0
→ (sin‘𝐴) =
0) |
28 | 26, 27 | sylan9req 2800 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) =
0) |
29 | | efcl 15720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
· 𝐴) ∈ ℂ
→ (exp‘(i · 𝐴)) ∈ ℂ) |
30 | 18, 29 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
∈ ℂ) |
31 | | negicn 11152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -i ∈
ℂ |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ → -i ∈
ℂ) |
33 | 32, 11 | mulcld 10926 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ → (-i
· 𝐴) ∈
ℂ) |
34 | | efcl 15720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((-i
· 𝐴) ∈ ℂ
→ (exp‘(-i · 𝐴)) ∈ ℂ) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(exp‘(-i · 𝐴))
∈ ℂ) |
36 | 30, 35 | subcld 11262 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) ∈ ℂ) |
37 | | 2mulicn 12126 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· i) ∈ ℂ |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (2
· i) ∈ ℂ) |
39 | | 2muline0 12127 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· i) ≠ 0 |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (2
· i) ≠ 0) |
41 | 36, 38, 40 | diveq0ad 11691 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) = 0)) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) = 0)) |
43 | 28, 42 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) = 0) |
44 | 30, 35 | subeq0ad 11272 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i
· 𝐴)) =
(exp‘(-i · 𝐴)))) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i
· 𝐴)) =
(exp‘(-i · 𝐴)))) |
46 | 43, 45 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘(i · 𝐴))
= (exp‘(-i · 𝐴))) |
47 | 46 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i
· 𝐴)))) |
48 | | efadd 15731 |
. . . . . . . . . . . . 13
⊢ (((i
· 𝐴) ∈ ℂ
∧ (-i · 𝐴)
∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i
· 𝐴)))) |
49 | 18, 33, 48 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
((exp‘(i · 𝐴))
· (exp‘(-i · 𝐴)))) |
50 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
((exp‘(i · 𝐴))
· (exp‘(-i · 𝐴)))) |
51 | 47, 50 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴)))) |
52 | 16, 32, 11 | adddird 10931 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → ((i + -i)
· 𝐴) = ((i ·
𝐴) + (-i · 𝐴))) |
53 | 15 | negidi 11220 |
. . . . . . . . . . . . . . 15
⊢ (i + -i)
= 0 |
54 | 53 | oveq1i 7265 |
. . . . . . . . . . . . . 14
⊢ ((i + -i)
· 𝐴) = (0 ·
𝐴) |
55 | 52, 54 | eqtr3di 2794 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → ((i
· 𝐴) + (-i ·
𝐴)) = (0 · 𝐴)) |
56 | 11 | mul02d 11103 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (0
· 𝐴) =
0) |
57 | 55, 56 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → ((i
· 𝐴) + (-i ·
𝐴)) = 0) |
58 | 57 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
(exp‘0)) |
59 | 58 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
(exp‘0)) |
60 | | ef0 15728 |
. . . . . . . . . . 11
⊢
(exp‘0) = 1 |
61 | 60 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘0) = 1) |
62 | 51, 59, 61 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴))) = 1) |
63 | 25, 62 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘(i · (2 · 𝐴))) = 1) |
64 | 63 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)) |
65 | | abs1 14937 |
. . . . . . 7
⊢
(abs‘1) = 1 |
66 | 64, 65 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(exp‘(i · (2 · 𝐴)))) = 1) |
67 | | absefib 15835 |
. . . . . . . 8
⊢ ((2
· 𝐴) ∈ ℂ
→ ((2 · 𝐴)
∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)) |
68 | 67 | biimparc 479 |
. . . . . . 7
⊢
(((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈
ℝ) |
69 | 68 | ancoms 458 |
. . . . . 6
⊢ (((2
· 𝐴) ∈ ℂ
∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈
ℝ) |
70 | 14, 66, 69 | syl2an2r 681 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(2 · 𝐴) ∈
ℝ) |
71 | | mulre 14760 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈
ℝ)) |
72 | 71 | 4animp1 42006 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 2 ∈
ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ) |
73 | 72 | 4an31 42007 |
. . . . 5
⊢ ((((2
≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈
ℝ) |
74 | 5, 10, 12, 70, 73 | syl1111anc 836 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
𝐴 ∈
ℝ) |
75 | 3 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ∈ ℝ+) |
76 | 74, 75 | modcld 13523 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) ∈
ℝ) |
77 | 76 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) ∈
ℂ) |
78 | 77 | sincld 15767 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(sin‘(𝐴 mod π))
∈ ℂ) |
79 | 1 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ∈ ℝ) |
80 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
81 | 80, 1, 2 | ltleii 11028 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
π |
82 | | gt0ne0 11370 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((π
∈ ℝ ∧ 0 < π) → π ≠ 0) |
83 | 82 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((π
∈ ℝ ∧ 0 < π ∧ 0 ≤ π) → π ≠
0) |
84 | 83 | 3com23 1124 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((π
∈ ℝ ∧ 0 ≤ π ∧ 0 < π) → π ≠
0) |
85 | 1, 81, 2, 84 | mp3an 1459 |
. . . . . . . . . . . . . . . . . . . 20
⊢ π ≠
0 |
86 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ≠ 0) |
87 | 74, 79, 86 | redivcld 11733 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 / π) ∈
ℝ) |
88 | 87 | flcld 13446 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(⌊‘(𝐴 / π))
∈ ℤ) |
89 | 88 | znegcld 12357 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-(⌊‘(𝐴 / π))
∈ ℤ) |
90 | | abssinper 25582 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
-(⌊‘(𝐴 / π))
∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) =
(abs‘(sin‘𝐴))) |
91 | 90 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
-(⌊‘(𝐴 / π))
∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) ·
π))))) |
92 | 91 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(-(⌊‘(𝐴 /
π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) ·
π)))))) |
93 | 92 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) ·
π)))))) |
94 | 89, 93 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
(abs‘(sin‘(𝐴 +
(-(⌊‘(𝐴 /
π)) · π))))) |
95 | 88 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(⌊‘(𝐴 / π))
∈ ℂ) |
96 | 95 | negcld 11249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-(⌊‘(𝐴 / π))
∈ ℂ) |
97 | 1 | recni 10920 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ π
∈ ℂ |
98 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ∈ ℂ) |
99 | 96, 98 | mulcld 10926 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) · π) ∈ ℂ) |
100 | 98, 95 | mulcld 10926 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(π · (⌊‘(𝐴 / π))) ∈ ℂ) |
101 | 100 | negcld 11249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-(π · (⌊‘(𝐴 / π))) ∈ ℂ) |
102 | 95, 98 | mulneg1d 11358 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) · π) = -((⌊‘(𝐴 / π)) · π)) |
103 | 95, 98 | mulcomd 10927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((⌊‘(𝐴 / π))
· π) = (π · (⌊‘(𝐴 / π)))) |
104 | 103 | negeqd 11145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-((⌊‘(𝐴 /
π)) · π) = -(π · (⌊‘(𝐴 / π)))) |
105 | 102, 104 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) · π) = -(π · (⌊‘(𝐴 / π)))) |
106 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((-(⌊‘(𝐴
/ π)) · π) = -(π · (⌊‘(𝐴 / π))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π ·
(⌊‘(𝐴 /
π))))) |
107 | 106 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((-(⌊‘(𝐴 / π)) · π) = -(π ·
(⌊‘(𝐴 / π)))
∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧
(-(⌊‘(𝐴 /
π)) · π) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π ·
(⌊‘(𝐴 /
π))))) |
108 | 107 | 4an4132 42008 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℂ ∧
(-(⌊‘(𝐴 /
π)) · π) ∈ ℂ) ∧ -(π ·
(⌊‘(𝐴 / π)))
∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) = -(π ·
(⌊‘(𝐴 /
π)))) → (𝐴 +
(-(⌊‘(𝐴 /
π)) · π)) = (𝐴
+ -(π · (⌊‘(𝐴 / π))))) |
109 | 12, 99, 101, 105, 108 | syl1111anc 836 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 +
(-(⌊‘(𝐴 /
π)) · π)) = (𝐴
+ -(π · (⌊‘(𝐴 / π))))) |
110 | 12, 100 | negsubd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 + -(π ·
(⌊‘(𝐴 /
π)))) = (𝐴 − (π
· (⌊‘(𝐴
/ π))))) |
111 | 109, 110 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 +
(-(⌊‘(𝐴 /
π)) · π)) = (𝐴
− (π · (⌊‘(𝐴 / π))))) |
112 | 111 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(sin‘(𝐴 +
(-(⌊‘(𝐴 /
π)) · π))) = (sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π)))))) |
113 | 112 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘(𝐴 +
(-(⌊‘(𝐴 /
π)) · π)))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
114 | 94, 113 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
(abs‘(sin‘(𝐴
− (π · (⌊‘(𝐴 / π))))))) |
115 | | modval 13519 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π ·
(⌊‘(𝐴 /
π))))) |
116 | 115 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π)))))) |
117 | 116 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
118 | 3, 117 | mpan2 687 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ →
(abs‘(sin‘(𝐴
mod π))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
119 | 74, 118 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘(𝐴
mod π))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
120 | 114, 119 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
(abs‘(sin‘(𝐴
mod π)))) |
121 | 27 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢
((sin‘𝐴) = 0
→ (abs‘(sin‘𝐴)) = (abs‘0)) |
122 | | abs0 14925 |
. . . . . . . . . . . . . . 15
⊢
(abs‘0) = 0 |
123 | 121, 122 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢
((sin‘𝐴) = 0
→ (abs‘(sin‘𝐴)) = 0) |
124 | 123 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
0) |
125 | 120, 124 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘(𝐴
mod π))) = 0) |
126 | 78, 125 | abs00d 15086 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(sin‘(𝐴 mod π)) =
0) |
127 | | notnotb 314 |
. . . . . . . . . . . . 13
⊢
((sin‘(𝐴 mod
π)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod π)) = 0) |
128 | 127 | bicomi 223 |
. . . . . . . . . . . 12
⊢ (¬
¬ (sin‘(𝐴 mod
π)) = 0 ↔ (sin‘(𝐴 mod π)) = 0) |
129 | | ltne 11002 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → (sin‘(𝐴 mod π)) ≠
0) |
130 | 129 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → ¬ (sin‘(𝐴 mod π)) =
0) |
131 | 130 | expcom 413 |
. . . . . . . . . . . . . 14
⊢ (0 <
(sin‘(𝐴 mod π))
→ (0 ∈ ℝ → ¬ (sin‘(𝐴 mod π)) = 0)) |
132 | 80, 131 | mpi 20 |
. . . . . . . . . . . . 13
⊢ (0 <
(sin‘(𝐴 mod π))
→ ¬ (sin‘(𝐴
mod π)) = 0) |
133 | 132 | con3i 154 |
. . . . . . . . . . . 12
⊢ (¬
¬ (sin‘(𝐴 mod
π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π))) |
134 | 128, 133 | sylbir 234 |
. . . . . . . . . . 11
⊢
((sin‘(𝐴 mod
π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π))) |
135 | 126, 134 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ 0 < (sin‘(𝐴
mod π))) |
136 | | sinq12gt0 25569 |
. . . . . . . . . 10
⊢ ((𝐴 mod π) ∈ (0(,)π)
→ 0 < (sin‘(𝐴
mod π))) |
137 | 135, 136 | nsyl 140 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ (𝐴 mod π) ∈
(0(,)π)) |
138 | 80 | rexri 10964 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
139 | 1 | rexri 10964 |
. . . . . . . . . . 11
⊢ π
∈ ℝ* |
140 | | elioo2 13049 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ*) →
((𝐴 mod π) ∈
(0(,)π) ↔ ((𝐴 mod
π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))) |
141 | 138, 139,
140 | mp2an 688 |
. . . . . . . . . 10
⊢ ((𝐴 mod π) ∈ (0(,)π)
↔ ((𝐴 mod π) ∈
ℝ ∧ 0 < (𝐴 mod
π) ∧ (𝐴 mod π)
< π)) |
142 | 141 | notbii 319 |
. . . . . . . . 9
⊢ (¬
(𝐴 mod π) ∈
(0(,)π) ↔ ¬ ((𝐴
mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)) |
143 | 137, 142 | sylib 217 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ ((𝐴 mod π) ∈
ℝ ∧ 0 < (𝐴 mod
π) ∧ (𝐴 mod π)
< π)) |
144 | | 3anan12 1094 |
. . . . . . . . 9
⊢ (((𝐴 mod π) ∈ ℝ ∧
0 < (𝐴 mod π) ∧
(𝐴 mod π) < π)
↔ (0 < (𝐴 mod π)
∧ ((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π))) |
145 | 144 | notbii 319 |
. . . . . . . 8
⊢ (¬
((𝐴 mod π) ∈
ℝ ∧ 0 < (𝐴 mod
π) ∧ (𝐴 mod π)
< π) ↔ ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) <
π))) |
146 | 143, 145 | sylib 217 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ (0 < (𝐴 mod π)
∧ ((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π))) |
147 | | modlt 13528 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (𝐴 mod π) < π) |
148 | 147 | ancoms 458 |
. . . . . . . . 9
⊢ ((π
∈ ℝ+ ∧ 𝐴 ∈ ℝ) → (𝐴 mod π) < π) |
149 | 3, 74, 148 | sylancr 586 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) <
π) |
150 | 76, 149 | jca 511 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π)) |
151 | | not12an2impnot1 42077 |
. . . . . . 7
⊢ ((¬
(0 < (𝐴 mod π) ∧
((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π)) ∧ ((𝐴 mod
π) ∈ ℝ ∧ (𝐴 mod π) < π)) → ¬ 0 <
(𝐴 mod
π)) |
152 | 146, 150,
151 | syl2anc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ 0 < (𝐴 mod
π)) |
153 | | modge0 13527 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → 0 ≤ (𝐴 mod π)) |
154 | 153 | ancoms 458 |
. . . . . . . 8
⊢ ((π
∈ ℝ+ ∧ 𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod π)) |
155 | 3, 74, 154 | sylancr 586 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 0
≤ (𝐴 mod
π)) |
156 | | leloe 10992 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (𝐴 mod
π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))) |
157 | 156 | biimp3a 1467 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ (𝐴 mod
π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) |
158 | 157 | idiALT 41986 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (𝐴 mod
π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) |
159 | 80, 76, 155, 158 | mp3an2i 1464 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(0 < (𝐴 mod π) ∨ 0
= (𝐴 mod
π))) |
160 | | pm2.53 847 |
. . . . . . . 8
⊢ ((0 <
(𝐴 mod π) ∨ 0 =
(𝐴 mod π)) → (¬
0 < (𝐴 mod π) →
0 = (𝐴 mod
π))) |
161 | 160 | imp 406 |
. . . . . . 7
⊢ (((0 <
(𝐴 mod π) ∨ 0 =
(𝐴 mod π)) ∧ ¬ 0
< (𝐴 mod π)) → 0
= (𝐴 mod
π)) |
162 | 161 | ancoms 458 |
. . . . . 6
⊢ ((¬ 0
< (𝐴 mod π) ∧ (0
< (𝐴 mod π) ∨ 0 =
(𝐴 mod π))) → 0 =
(𝐴 mod
π)) |
163 | 152, 159,
162 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 0
= (𝐴 mod
π)) |
164 | 163 | eqcomd 2744 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) =
0) |
165 | | mod0 13524 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ)) |
166 | 165 | biimp3a 1467 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ) |
167 | 166 | 3com12 1121 |
. . . 4
⊢ ((π
∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ) |
168 | 3, 74, 164, 167 | mp3an2i 1464 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 / π) ∈
ℤ) |
169 | 168 | ex 412 |
. 2
⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 →
(𝐴 / π) ∈
ℤ)) |
170 | 97 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → π
∈ ℂ) |
171 | 85 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → π ≠
0) |
172 | 11, 170, 171 | divcan1d 11682 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴) |
173 | 172 | fveq2d 6760 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(sin‘((𝐴 / π)
· π)) = (sin‘𝐴)) |
174 | | id 22 |
. . . . 5
⊢ ((𝐴 / π) ∈ ℤ →
(𝐴 / π) ∈
ℤ) |
175 | | sinkpi 25583 |
. . . . 5
⊢ ((𝐴 / π) ∈ ℤ →
(sin‘((𝐴 / π)
· π)) = 0) |
176 | 174, 175 | syl 17 |
. . . 4
⊢ ((𝐴 / π) ∈ ℤ →
(sin‘((𝐴 / π)
· π)) = 0) |
177 | 173, 176 | sylan9req 2800 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) →
(sin‘𝐴) =
0) |
178 | 177 | ex 412 |
. 2
⊢ (𝐴 ∈ ℂ → ((𝐴 / π) ∈ ℤ →
(sin‘𝐴) =
0)) |
179 | 169, 178 | impbid 211 |
1
⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 ↔
(𝐴 / π) ∈
ℤ)) |