Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sineq0ALT Structured version   Visualization version   GIF version

Theorem sineq0ALT 44899
Description: A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44899. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26409. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26409 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sineq0ALT (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0ALT
StepHypRef Expression
1 pire 26342 . . . . 5 π ∈ ℝ
2 pipos 26344 . . . . 5 0 < π
31, 2elrpii 12930 . . . 4 π ∈ ℝ+
4 2ne0 12266 . . . . . 6 2 ≠ 0
54a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ≠ 0)
6 2cn 12237 . . . . . . 7 2 ∈ ℂ
7 2re 12236 . . . . . . . 8 2 ∈ ℝ
87a1i 11 . . . . . . 7 (2 ∈ ℂ → 2 ∈ ℝ)
96, 8ax-mp 5 . . . . . 6 2 ∈ ℝ
109a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ∈ ℝ)
11 id 22 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
1211adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℂ)
136a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 2 ∈ ℂ)
1413, 11mulcld 11170 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
15 ax-icn 11103 . . . . . . . . . . . . . . 15 i ∈ ℂ
1615a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → i ∈ ℂ)
1713, 16, 11mul12d 11359 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = (i · (2 · 𝐴)))
1816, 11mulcld 11170 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
19182timesd 12401 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2017, 19eqtr3d 2766 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2120fveq2d 6844 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
22 efadd 16036 . . . . . . . . . . . 12 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2318, 18, 22syl2anc 584 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2421, 23eqtrd 2764 . . . . . . . . . 10 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2524adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
26 sinval 16066 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
27 id 22 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (sin‘𝐴) = 0)
2826, 27sylan9req 2785 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0)
29 efcl 16024 . . . . . . . . . . . . . . . . . 18 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
3018, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
31 negicn 11398 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → -i ∈ ℂ)
3332, 11mulcld 11170 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
34 efcl 16024 . . . . . . . . . . . . . . . . . 18 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
3630, 35subcld 11509 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
37 2mulicn 12382 . . . . . . . . . . . . . . . . 17 (2 · i) ∈ ℂ
3837a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
39 2muline0 12383 . . . . . . . . . . . . . . . . 17 (2 · i) ≠ 0
4039a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (2 · i) ≠ 0)
4136, 38, 40diveq0ad 11944 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4241adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
4328, 42mpbid 232 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0)
4430, 35subeq0ad 11519 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4544adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
4643, 45mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)))
4746oveq2d 7385 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
48 efadd 16036 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
4918, 33, 48syl2anc 584 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5049adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
5147, 50eqtr4d 2767 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴))))
5216, 32, 11adddird 11175 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
5315negidi 11467 . . . . . . . . . . . . . . 15 (i + -i) = 0
5453oveq1i 7379 . . . . . . . . . . . . . 14 ((i + -i) · 𝐴) = (0 · 𝐴)
5552, 54eqtr3di 2779 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = (0 · 𝐴))
5611mul02d 11348 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
5755, 56eqtrd 2764 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
5857fveq2d 6844 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
5958adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
60 ef0 16033 . . . . . . . . . . 11 (exp‘0) = 1
6160a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘0) = 1)
6251, 59, 613eqtrd 2768 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = 1)
6325, 62eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = 1)
6463fveq2d 6844 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
65 abs1 15239 . . . . . . 7 (abs‘1) = 1
6664, 65eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
67 absefib 16142 . . . . . . . 8 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
6867biimparc 479 . . . . . . 7 (((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈ ℝ)
6968ancoms 458 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈ ℝ)
7014, 66, 69syl2an2r 685 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (2 · 𝐴) ∈ ℝ)
71 mulre 15063 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
72714animp1 44460 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 2 ∈ ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
73724an31 44461 . . . . 5 ((((2 ≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
745, 10, 12, 70, 73syl1111anc 840 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
753a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ+)
7674, 75modcld 13813 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
7776recnd 11178 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℂ)
7877sincld 16074 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) ∈ ℂ)
791a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℝ)
80 0re 11152 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
8180, 1, 2ltleii 11273 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ π
82 gt0ne0 11619 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℝ ∧ 0 < π) → π ≠ 0)
83823adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((π ∈ ℝ ∧ 0 < π ∧ 0 ≤ π) → π ≠ 0)
84833com23 1126 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 0 ≤ π ∧ 0 < π) → π ≠ 0)
851, 81, 2, 84mp3an 1463 . . . . . . . . . . . . . . . . . . . 20 π ≠ 0
8685a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ≠ 0)
8774, 79, 86redivcld 11986 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
8887flcld 13736 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
8988znegcld 12616 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
90 abssinper 26406 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9190eqcomd 2735 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9291ex 412 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9392adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))))
9489, 93mpd 15 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
9588zcnd 12615 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
9695negcld 11496 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℂ)
971recni 11164 . . . . . . . . . . . . . . . . . . . . 21 π ∈ ℂ
9897a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → π ∈ ℂ)
9996, 98mulcld 11170 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) ∈ ℂ)
10098, 95mulcld 11170 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
101100negcld 11496 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) ∈ ℂ)
10295, 98mulneg1d 11607 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
10395, 98mulcomd 11171 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((⌊‘(𝐴 / π)) · π) = (π · (⌊‘(𝐴 / π))))
104103negeqd 11391 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -((⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
105102, 104eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))))
106 oveq2 7377 . . . . . . . . . . . . . . . . . . . . 21 ((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
107106ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π))) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
1081074an4132 44462 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ (-(⌊‘(𝐴 / π)) · π) ∈ ℂ) ∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) = -(π · (⌊‘(𝐴 / π)))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
10912, 99, 101, 105, 108syl1111anc 840 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π · (⌊‘(𝐴 / π)))))
11012, 100negsubd 11515 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
111109, 110eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
112111fveq2d 6844 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
113112fveq2d 6844 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11494, 113eqtrd 2764 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
115 modval 13809 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
116115fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 − (π · (⌊‘(𝐴 / π))))))
117116fveq2d 6844 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
1183, 117mpan2 691 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
11974, 118syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π · (⌊‘(𝐴 / π)))))))
120114, 119eqtr4d 2767 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 mod π))))
12127fveq2d 6844 . . . . . . . . . . . . . . 15 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = (abs‘0))
122 abs0 15227 . . . . . . . . . . . . . . 15 (abs‘0) = 0
123121, 122eqtrdi 2780 . . . . . . . . . . . . . 14 ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = 0)
124123adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = 0)
125120, 124eqtr3d 2766 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
12678, 125abs00d 15391 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = 0)
127 notnotb 315 . . . . . . . . . . . . 13 ((sin‘(𝐴 mod π)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod π)) = 0)
128127bicomi 224 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 ↔ (sin‘(𝐴 mod π)) = 0)
129 ltne 11247 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → (sin‘(𝐴 mod π)) ≠ 0)
130129neneqd 2930 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → ¬ (sin‘(𝐴 mod π)) = 0)
131130expcom 413 . . . . . . . . . . . . . 14 (0 < (sin‘(𝐴 mod π)) → (0 ∈ ℝ → ¬ (sin‘(𝐴 mod π)) = 0))
13280, 131mpi 20 . . . . . . . . . . . . 13 (0 < (sin‘(𝐴 mod π)) → ¬ (sin‘(𝐴 mod π)) = 0)
133132con3i 154 . . . . . . . . . . . 12 (¬ ¬ (sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
134128, 133sylbir 235 . . . . . . . . . . 11 ((sin‘(𝐴 mod π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π)))
135126, 134syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (sin‘(𝐴 mod π)))
136 sinq12gt0 26392 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
137135, 136nsyl 140 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (𝐴 mod π) ∈ (0(,)π))
13880rexri 11208 . . . . . . . . . . 11 0 ∈ ℝ*
1391rexri 11208 . . . . . . . . . . 11 π ∈ ℝ*
140 elioo2 13323 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
141138, 139, 140mp2an 692 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
142141notbii 320 . . . . . . . . 9 (¬ (𝐴 mod π) ∈ (0(,)π) ↔ ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
143137, 142sylib 218 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
144 3anan12 1095 . . . . . . . . 9 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
145144notbii 320 . . . . . . . 8 (¬ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
146143, 145sylib 218 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)))
147 modlt 13818 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
148147ancoms 458 . . . . . . . . 9 ((π ∈ ℝ+𝐴 ∈ ℝ) → (𝐴 mod π) < π)
1493, 74, 148sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
15076, 149jca 511 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
151 not12an2impnot1 44531 . . . . . . 7 ((¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π)) → ¬ 0 < (𝐴 mod π))
152146, 150, 151syl2anc 584 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
153 modge0 13817 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
154153ancoms 458 . . . . . . . 8 ((π ∈ ℝ+𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod π))
1553, 74, 154sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
156 leloe 11236 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
157156biimp3a 1471 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
158157idiALT 44441 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
15980, 76, 155, 158mp3an2i 1468 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
160 pm2.53 851 . . . . . . . 8 ((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
161160imp 406 . . . . . . 7 (((0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)) ∧ ¬ 0 < (𝐴 mod π)) → 0 = (𝐴 mod π))
162161ancoms 458 . . . . . 6 ((¬ 0 < (𝐴 mod π) ∧ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) → 0 = (𝐴 mod π))
163152, 159, 162syl2anc 584 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
164163eqcomd 2735 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
165 mod0 13814 . . . . . 6 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
166165biimp3a 1471 . . . . 5 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1671663com12 1123 . . . 4 ((π ∈ ℝ+𝐴 ∈ ℝ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ)
1683, 74, 164, 167mp3an2i 1468 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
169168ex 412 . 2 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (𝐴 / π) ∈ ℤ))
17097a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ∈ ℂ)
17185a1i 11 . . . . . 6 (𝐴 ∈ ℂ → π ≠ 0)
17211, 170, 171divcan1d 11935 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
173172fveq2d 6844 . . . 4 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
174 id 22 . . . . 5 ((𝐴 / π) ∈ ℤ → (𝐴 / π) ∈ ℤ)
175 sinkpi 26407 . . . . 5 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
176174, 175syl 17 . . . 4 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
177173, 176sylan9req 2785 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
178177ex 412 . 2 (𝐴 ∈ ℂ → ((𝐴 / π) ∈ ℤ → (sin‘𝐴) = 0))
179169, 178impbid 212 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  cz 12505  +crp 12927  (,)cioo 13282  cfl 13728   mod cmo 13807  abscabs 15176  expce 16003  sincsin 16005  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator