Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4animp1 Structured version   Visualization version   GIF version

Theorem 4animp1 41655
Description: A single hypothesis unification deduction with an assertion which is an implication with a 4-right-nested conjunction antecedent. (Contributed by Alan Sare, 30-May-2018.)
Hypothesis
Ref Expression
4animp1.1 ((𝜑𝜓𝜒) → (𝜏𝜃))
Assertion
Ref Expression
4animp1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem 4animp1
StepHypRef Expression
1 simpr 488 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜃)
2 4animp1.1 . . 3 ((𝜑𝜓𝜒) → (𝜏𝜃))
32ad4ant123 1173 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → (𝜏𝜃))
41, 3mpbird 260 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090
This theorem is referenced by:  sineq0ALT  42095
  Copyright terms: Public domain W3C validator