MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant123 Structured version   Visualization version   GIF version

Theorem ad4ant123 1169
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
ad4ant123 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃)

Proof of Theorem ad4ant123
StepHypRef Expression
1 ad4ant3.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213expa 1115 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
32adantr 484 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  fin1a2lem11  9821  wrdl3s3  14317  usgr2pthlem  27550  satfrel  32688  uzindd  39223  4animp1  41138  hspmbllem2  43206
  Copyright terms: Public domain W3C validator