MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4ralbii Structured version   Visualization version   GIF version

Theorem 4ralbii 3130
Description: Inference adding four restricted universal quantifiers to both sides of an equivalence. (Contributed by Scott Fenton, 28-Feb-2025.)
Hypothesis
Ref Expression
4ralbii.1 (𝜑𝜓)
Assertion
Ref Expression
4ralbii (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓)

Proof of Theorem 4ralbii
StepHypRef Expression
1 4ralbii.1 . . 3 (𝜑𝜓)
21ralbii 3092 . 2 (∀𝑤𝐷 𝜑 ↔ ∀𝑤𝐷 𝜓)
323ralbii 3129 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 206  df-ral 3061
This theorem is referenced by:  cbvral6vw  3241  cbvral8vw  3242
  Copyright terms: Public domain W3C validator