MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbiim Structured version   Visualization version   GIF version

Theorem 2ralbiim 3099
Description: Split a biconditional and distribute two restricted universal quantifiers, analogous to 2albiim 1894 and ralbiim 3098. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
2ralbiim (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∀𝑥𝐴𝑦𝐵 (𝜓𝜑)))

Proof of Theorem 2ralbiim
StepHypRef Expression
1 ralbiim 3098 . . 3 (∀𝑦𝐵 (𝜑𝜓) ↔ (∀𝑦𝐵 (𝜑𝜓) ∧ ∀𝑦𝐵 (𝜓𝜑)))
21ralbii 3090 . 2 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝜓) ∧ ∀𝑦𝐵 (𝜓𝜑)))
3 r19.26 3094 . 2 (∀𝑥𝐴 (∀𝑦𝐵 (𝜑𝜓) ∧ ∀𝑦𝐵 (𝜓𝜑)) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∀𝑥𝐴𝑦𝐵 (𝜓𝜑)))
42, 3bitri 274 1 (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ∧ ∀𝑥𝐴𝑦𝐵 (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ral 3068
This theorem is referenced by:  thincciso  46218
  Copyright terms: Public domain W3C validator