![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ralbiim | Structured version Visualization version GIF version |
Description: Split a biconditional and distribute 2 quantifiers, analogous to 2albiim 1872 and ralbiim 3141. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
2ralbiim | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ↔ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbiim 3141 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ↔ 𝜓) ↔ (∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑))) | |
2 | 1 | ralbii 3132 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ↔ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑))) |
3 | r19.26 3137 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑)) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 276 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ↔ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝜓) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wral 3105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ral 3110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |