|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvral6vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of sextuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 5-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| cbvral6vw.1 | ⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) | 
| cbvral6vw.2 | ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) | 
| cbvral6vw.3 | ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) | 
| cbvral6vw.4 | ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜂)) | 
| cbvral6vw.5 | ⊢ (𝑝 = 𝑒 → (𝜂 ↔ 𝜁)) | 
| cbvral6vw.6 | ⊢ (𝑞 = 𝑓 → (𝜁 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvral6vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑒 ∈ 𝐸 ∀𝑓 ∈ 𝐹 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvral6vw.1 | . . . 4 ⊢ (𝑥 = 𝑎 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | 2ralbidv 3221 | . . 3 ⊢ (𝑥 = 𝑎 → (∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜑 ↔ ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒)) | 
| 3 | cbvral6vw.2 | . . . 4 ⊢ (𝑦 = 𝑏 → (𝜒 ↔ 𝜃)) | |
| 4 | 3 | 2ralbidv 3221 | . . 3 ⊢ (𝑦 = 𝑏 → (∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜒 ↔ ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜃)) | 
| 5 | cbvral6vw.3 | . . . 4 ⊢ (𝑧 = 𝑐 → (𝜃 ↔ 𝜏)) | |
| 6 | 5 | 2ralbidv 3221 | . . 3 ⊢ (𝑧 = 𝑐 → (∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜃 ↔ ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜏)) | 
| 7 | cbvral6vw.4 | . . . 4 ⊢ (𝑤 = 𝑑 → (𝜏 ↔ 𝜂)) | |
| 8 | 7 | 2ralbidv 3221 | . . 3 ⊢ (𝑤 = 𝑑 → (∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜏 ↔ ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜂)) | 
| 9 | 2, 4, 6, 8 | cbvral4vw 3244 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜂) | 
| 10 | cbvral6vw.5 | . . . 4 ⊢ (𝑝 = 𝑒 → (𝜂 ↔ 𝜁)) | |
| 11 | cbvral6vw.6 | . . . 4 ⊢ (𝑞 = 𝑓 → (𝜁 ↔ 𝜓)) | |
| 12 | 10, 11 | cbvral2vw 3241 | . . 3 ⊢ (∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜂 ↔ ∀𝑒 ∈ 𝐸 ∀𝑓 ∈ 𝐹 𝜓) | 
| 13 | 12 | 4ralbii 3131 | . 2 ⊢ (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜂 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑒 ∈ 𝐸 ∀𝑓 ∈ 𝐹 𝜓) | 
| 14 | 9, 13 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑤 ∈ 𝐷 ∀𝑝 ∈ 𝐸 ∀𝑞 ∈ 𝐹 𝜑 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ 𝐷 ∀𝑒 ∈ 𝐸 ∀𝑓 ∈ 𝐹 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3061 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2816 df-ral 3062 | 
| This theorem is referenced by: mulsproplemcbv 28141 mulsprop 28156 | 
| Copyright terms: Public domain | W3C validator |