MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ralbii Structured version   Visualization version   GIF version

Theorem 3ralbii 3117
Description: Inference adding three restricted universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 25-Jul-2019.)
Hypothesis
Ref Expression
3ralbii.1 (𝜑𝜓)
Assertion
Ref Expression
3ralbii (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)

Proof of Theorem 3ralbii
StepHypRef Expression
1 3ralbii.1 . . 3 (𝜑𝜓)
212ralbii 3115 . 2 (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
32ralbii 3082 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ral 3052
This theorem is referenced by:  4ralbii  3118  cbvral4vw  3227  isdomn4r  20679  usgrexmpl2trifr  48041
  Copyright terms: Public domain W3C validator