| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrot4 | Structured version Visualization version GIF version | ||
| Description: Rotate four universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
| Ref | Expression |
|---|---|
| alrot4 | ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrot3 2161 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑦𝜑) | |
| 2 | 1 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑥∀𝑧∀𝑤∀𝑦𝜑) |
| 3 | alrot3 2161 | . 2 ⊢ (∀𝑥∀𝑧∀𝑤∀𝑦𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2mo 2648 fun11 6615 |
| Copyright terms: Public domain | W3C validator |