Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrot4 | Structured version Visualization version GIF version |
Description: Rotate four universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
alrot4 | ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrot3 2157 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑦𝜑) | |
2 | 1 | albii 1822 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑥∀𝑧∀𝑤∀𝑦𝜑) |
3 | alrot3 2157 | . 2 ⊢ (∀𝑥∀𝑧∀𝑤∀𝑦𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-11 2154 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 2mo 2650 fun11 6508 |
Copyright terms: Public domain | W3C validator |