Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mo Structured version   Visualization version   GIF version

Theorem 2mo 2736
 Description: Two ways of expressing "there exists at most one ordered pair ⟨𝑥, 𝑦⟩ such that 𝜑(𝑥, 𝑦) holds. See also 2mo2 2735. (Contributed by NM, 2-Feb-2005.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 2-Nov-2019.)
Assertion
Ref Expression
2mo (∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝑦𝑧𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2mo
StepHypRef Expression
1 2mo2 2735 . . . 4 ((∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) ↔ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
2 nfmo1 2642 . . . . . . 7 𝑥∃*𝑥𝑦𝜑
3 nfe1 2155 . . . . . . . 8 𝑥𝑥𝜑
43nfmov 2645 . . . . . . 7 𝑥∃*𝑦𝑥𝜑
52, 4nfan 1901 . . . . . 6 𝑥(∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑)
6 nfe1 2155 . . . . . . . . 9 𝑦𝑦𝜑
76nfmov 2645 . . . . . . . 8 𝑦∃*𝑥𝑦𝜑
8 nfmo1 2642 . . . . . . . 8 𝑦∃*𝑦𝑥𝜑
97, 8nfan 1901 . . . . . . 7 𝑦(∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑)
10 19.8a 2182 . . . . . . . . 9 (𝜑 → ∃𝑦𝜑)
11 spsbe 2089 . . . . . . . . . 10 ([𝑤 / 𝑦]𝜑 → ∃𝑦𝜑)
1211sbimi 2080 . . . . . . . . 9 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → [𝑧 / 𝑥]∃𝑦𝜑)
13 nfv 1916 . . . . . . . . . . . 12 𝑧𝑦𝜑
1413mo3 2649 . . . . . . . . . . 11 (∃*𝑥𝑦𝜑 ↔ ∀𝑥𝑧((∃𝑦𝜑 ∧ [𝑧 / 𝑥]∃𝑦𝜑) → 𝑥 = 𝑧))
1514biimpi 219 . . . . . . . . . 10 (∃*𝑥𝑦𝜑 → ∀𝑥𝑧((∃𝑦𝜑 ∧ [𝑧 / 𝑥]∃𝑦𝜑) → 𝑥 = 𝑧))
161519.21bbi 2191 . . . . . . . . 9 (∃*𝑥𝑦𝜑 → ((∃𝑦𝜑 ∧ [𝑧 / 𝑥]∃𝑦𝜑) → 𝑥 = 𝑧))
1710, 12, 16syl2ani 609 . . . . . . . 8 (∃*𝑥𝑦𝜑 → ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → 𝑥 = 𝑧))
18 19.8a 2182 . . . . . . . . 9 (𝜑 → ∃𝑥𝜑)
19 sbcom2 2169 . . . . . . . . . 10 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
20 spsbe 2089 . . . . . . . . . . 11 ([𝑧 / 𝑥]𝜑 → ∃𝑥𝜑)
2120sbimi 2080 . . . . . . . . . 10 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 → [𝑤 / 𝑦]∃𝑥𝜑)
2219, 21sylbi 220 . . . . . . . . 9 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → [𝑤 / 𝑦]∃𝑥𝜑)
23 nfv 1916 . . . . . . . . . . . 12 𝑤𝑥𝜑
2423mo3 2649 . . . . . . . . . . 11 (∃*𝑦𝑥𝜑 ↔ ∀𝑦𝑤((∃𝑥𝜑 ∧ [𝑤 / 𝑦]∃𝑥𝜑) → 𝑦 = 𝑤))
2524biimpi 219 . . . . . . . . . 10 (∃*𝑦𝑥𝜑 → ∀𝑦𝑤((∃𝑥𝜑 ∧ [𝑤 / 𝑦]∃𝑥𝜑) → 𝑦 = 𝑤))
262519.21bbi 2191 . . . . . . . . 9 (∃*𝑦𝑥𝜑 → ((∃𝑥𝜑 ∧ [𝑤 / 𝑦]∃𝑥𝜑) → 𝑦 = 𝑤))
2718, 22, 26syl2ani 609 . . . . . . . 8 (∃*𝑦𝑥𝜑 → ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → 𝑦 = 𝑤))
2817, 27anim12ii 620 . . . . . . 7 ((∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
299, 28alrimi 2215 . . . . . 6 ((∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → ∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
305, 29alrimi 2215 . . . . 5 ((∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → ∀𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
3130alrimivv 1930 . . . 4 ((∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) → ∀𝑧𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
321, 31sylbir 238 . . 3 (∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) → ∀𝑧𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
33 nfs1v 2161 . . . . . . . 8 𝑥[𝑧 / 𝑥][𝑤 / 𝑦]𝜑
34 nfs1v 2161 . . . . . . . . . 10 𝑦[𝑤 / 𝑦]𝜑
3534nfsbv 2351 . . . . . . . . 9 𝑦[𝑧 / 𝑥][𝑤 / 𝑦]𝜑
36 pm3.21 475 . . . . . . . . . 10 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (𝜑 → (𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)))
3736imim1d 82 . . . . . . . . 9 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
3835, 37alimd 2214 . . . . . . . 8 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → ∀𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
3933, 38alimd 2214 . . . . . . 7 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → ∀𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
4039com12 32 . . . . . 6 (∀𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∀𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
4140aleximi 1833 . . . . 5 (∀𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → (∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
4241aleximi 1833 . . . 4 (∀𝑧𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → (∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
43 2nexaln 1831 . . . . . 6 (¬ ∃𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
44 nfv 1916 . . . . . . 7 𝑤𝜑
45 nfv 1916 . . . . . . 7 𝑧𝜑
4644, 452sb8ev 2377 . . . . . 6 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
4743, 46xchnxbi 335 . . . . 5 (¬ ∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
48 pm2.21 123 . . . . . . . . 9 𝜑 → (𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
49482alimi 1814 . . . . . . . 8 (∀𝑥𝑦 ¬ 𝜑 → ∀𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
50492eximi 1837 . . . . . . 7 (∃𝑧𝑤𝑥𝑦 ¬ 𝜑 → ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
515019.23bi 2192 . . . . . 6 (∃𝑤𝑥𝑦 ¬ 𝜑 → ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
525119.23bi 2192 . . . . 5 (∀𝑥𝑦 ¬ 𝜑 → ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
5347, 52sylbi 220 . . . 4 (¬ ∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
5442, 53pm2.61d1 183 . . 3 (∀𝑧𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) → ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
5532, 54impbii 212 . 2 (∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑧𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
56 alrot4 2166 . 2 (∀𝑧𝑤𝑥𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝑦𝑧𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
5755, 56bitri 278 1 (∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝑦𝑧𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781  [wsb 2070  ∃*wmo 2622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2146  ax-11 2162  ax-12 2179 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624 This theorem is referenced by:  2mos  2737
 Copyright terms: Public domain W3C validator