| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1910, ax-6 1967, ax-7 2008, ax-10 2142, ax-12 2178. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1829 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1829 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: excomim 2164 excom13 2165 exrot3 2166 eeor 2332 ee4anv 2349 ee4anvOLD 2350 2sb8ef 2354 sbel2x 2472 2sb8e 2528 2euexv 2624 2euex 2634 2eu4 2648 rexcom4 3264 rexcomf 3277 gencbvex 3507 euind 3695 sbccomlemOLD 3833 elvvv 5714 dmuni 5878 dm0rn0 5888 dmcosseqOLD 5941 cnvopab 6110 rnco 6225 coass 6238 oprabidw 7418 oprabid 7419 dfoprab2 7447 uniuni 7738 opabex3d 7944 opabex3rd 7945 opabex3 7946 frxp 8105 domen 8933 xpassen 9035 scott0 9839 dfac5lem1 10076 dfac5lem4OLD 10081 cflemOLD 10199 ltexprlem1 10989 ltexprlem4 10992 fsumcom2 15740 fprodcom2 15950 gsumval3eu 19834 dprd2d2 19976 eldm3 35748 dfdm5 35760 dfrn5 35761 elfuns 35903 dfiota3 35911 brimg 35925 funpartlem 35930 bj-19.12 36749 bj-nnflemee 36751 bj-restuni 37085 sbccom2lem 38118 dmqsblocks 38845 diblsmopel 41165 dicelval3 41174 dihjatcclem4 41415 19.9dev 42202 nnoeomeqom 43301 pm11.6 44381 ax6e2ndeq 44549 e2ebind 44553 ax6e2ndeqVD 44898 e2ebindVD 44901 e2ebindALT 44918 ax6e2ndeqALT 44920 ich2ex 47469 ichexmpl1 47470 elsprel 47476 eliunxp2 48322 |
| Copyright terms: Public domain | W3C validator |