Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1913, ax-6 1971, ax-7 2011, ax-10 2137, ax-12 2171. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2156 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1831 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1831 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: excomim 2163 excom13 2164 exrot3 2165 eeor 2330 ee4anv 2349 2sb8ef 2354 sbel2x 2474 2sb8e 2535 2euexv 2633 2euex 2643 2eu4 2656 rexcom4 3233 rexcomf 3284 cgsex4gOLD 3477 gencbvex 3488 euind 3659 sbccomlem 3803 elvvv 5662 dmuni 5823 dm0rn0 5834 dmcosseq 5882 rnco 6156 coass 6169 oprabidw 7306 oprabid 7307 dfoprab2 7333 uniuni 7612 opabex3d 7808 opabex3rd 7809 opabex3 7810 frxp 7967 domen 8751 xpassen 8853 scott0 9644 dfac5lem1 9879 dfac5lem4 9882 cflem 10002 ltexprlem1 10792 ltexprlem4 10795 fsumcom2 15486 fprodcom2 15694 gsumval3eu 19505 dprd2d2 19647 cnvoprabOLD 31055 eldm3 33728 dfdm5 33747 dfrn5 33748 elfuns 34217 dfiota3 34225 brimg 34239 funpartlem 34244 bj-19.12 34943 bj-nnflemee 34945 bj-restuni 35268 sbccom2lem 36282 diblsmopel 39185 dicelval3 39194 dihjatcclem4 39435 19.9dev 40178 pm11.6 42010 ax6e2ndeq 42179 e2ebind 42183 ax6e2ndeqVD 42529 e2ebindVD 42532 e2ebindALT 42549 ax6e2ndeqALT 42551 ich2ex 44920 ichexmpl1 44921 elsprel 44927 eliunxp2 45669 |
Copyright terms: Public domain | W3C validator |