| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1910, ax-6 1967, ax-7 2007, ax-10 2141, ax-12 2177. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2159 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1829 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1829 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2157 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: excomim 2163 excom13 2164 exrot3 2165 eeor 2334 ee4anv 2352 ee4anvOLD 2353 2sb8ef 2358 sbel2x 2478 2sb8e 2534 2euexv 2630 2euex 2640 2eu4 2654 rexcom4 3269 rexcomf 3283 gencbvex 3520 euind 3707 sbccomlemOLD 3845 elvvv 5730 dmuni 5894 dm0rn0 5904 dmcosseqOLD 5957 cnvopab 6126 rnco 6241 coass 6254 oprabidw 7436 oprabid 7437 dfoprab2 7465 uniuni 7756 opabex3d 7964 opabex3rd 7965 opabex3 7966 frxp 8125 domen 8976 xpassen 9080 scott0 9900 dfac5lem1 10137 dfac5lem4OLD 10142 cflemOLD 10260 ltexprlem1 11050 ltexprlem4 11053 fsumcom2 15790 fprodcom2 16000 gsumval3eu 19885 dprd2d2 20027 eldm3 35778 dfdm5 35790 dfrn5 35791 elfuns 35933 dfiota3 35941 brimg 35955 funpartlem 35960 bj-19.12 36779 bj-nnflemee 36781 bj-restuni 37115 sbccom2lem 38148 diblsmopel 41190 dicelval3 41199 dihjatcclem4 41440 19.9dev 42265 nnoeomeqom 43336 pm11.6 44416 ax6e2ndeq 44584 e2ebind 44588 ax6e2ndeqVD 44933 e2ebindVD 44936 e2ebindALT 44953 ax6e2ndeqALT 44955 ich2ex 47482 ichexmpl1 47483 elsprel 47489 eliunxp2 48309 |
| Copyright terms: Public domain | W3C validator |