Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1916, ax-6 1974, ax-7 2014, ax-10 2140, ax-12 2174. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2159 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 319 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1834 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1834 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1539 ∃wex 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-11 2157 |
This theorem depends on definitions: df-bi 206 df-ex 1786 |
This theorem is referenced by: excomim 2166 excom13 2167 exrot3 2168 eeor 2333 ee4anv 2352 2sb8ev 2355 sbel2x 2475 2sb8e 2536 2euexv 2634 2euex 2644 2eu4 2657 rexcom4 3181 rexcomf 3285 cgsex4gOLD 3475 gencbvex 3486 euind 3662 sbccomlem 3807 elvvv 5661 dmuni 5820 dm0rn0 5831 dmcosseq 5879 rnco 6153 coass 6166 oprabidw 7299 oprabid 7300 dfoprab2 7324 uniuni 7603 opabex3d 7794 opabex3rd 7795 opabex3 7796 frxp 7951 domen 8722 xpassen 8822 scott0 9628 dfac5lem1 9863 dfac5lem4 9866 cflem 9986 ltexprlem1 10776 ltexprlem4 10779 fsumcom2 15467 fprodcom2 15675 gsumval3eu 19486 dprd2d2 19628 cnvoprabOLD 31034 eldm3 33707 dfdm5 33726 dfrn5 33727 elfuns 34196 dfiota3 34204 brimg 34218 funpartlem 34223 bj-19.12 34922 bj-nnflemee 34924 bj-restuni 35247 sbccom2lem 36261 diblsmopel 39164 dicelval3 39173 dihjatcclem4 39414 19.9dev 40158 pm11.6 41963 ax6e2ndeq 42132 e2ebind 42136 ax6e2ndeqVD 42482 e2ebindVD 42485 e2ebindALT 42502 ax6e2ndeqALT 42504 ich2ex 44872 ichexmpl1 44873 elsprel 44879 eliunxp2 45621 |
Copyright terms: Public domain | W3C validator |