| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1910, ax-6 1967, ax-7 2008, ax-10 2142, ax-12 2178. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1829 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1829 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: excomim 2164 excom13 2165 exrot3 2166 eeor 2332 ee4anv 2349 ee4anvOLD 2350 2sb8ef 2354 sbel2x 2472 2sb8e 2528 2euexv 2624 2euex 2634 2eu4 2648 rexcom4 3256 rexcomf 3269 gencbvex 3498 euind 3686 sbccomlemOLD 3824 elvvv 5699 dmuni 5861 dm0rn0 5871 dmcosseqOLDOLD 5925 cnvopab 6090 rnco 6205 coass 6218 oprabidw 7384 oprabid 7385 dfoprab2 7411 uniuni 7702 opabex3d 7907 opabex3rd 7908 opabex3 7909 frxp 8066 domen 8894 xpassen 8995 scott0 9801 dfac5lem1 10036 dfac5lem4OLD 10041 cflemOLD 10159 ltexprlem1 10949 ltexprlem4 10952 fsumcom2 15699 fprodcom2 15909 gsumval3eu 19801 dprd2d2 19943 eldm3 35736 dfdm5 35748 dfrn5 35749 elfuns 35891 dfiota3 35899 brimg 35913 funpartlem 35918 bj-19.12 36737 bj-nnflemee 36739 bj-restuni 37073 sbccom2lem 38106 dmqsblocks 38833 diblsmopel 41153 dicelval3 41162 dihjatcclem4 41403 19.9dev 42190 nnoeomeqom 43288 pm11.6 44368 ax6e2ndeq 44536 e2ebind 44540 ax6e2ndeqVD 44885 e2ebindVD 44888 e2ebindALT 44905 ax6e2ndeqALT 44907 ich2ex 47456 ichexmpl1 47457 elsprel 47463 eliunxp2 48322 |
| Copyright terms: Public domain | W3C validator |