| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1911, ax-6 1968, ax-7 2009, ax-10 2144, ax-12 2180. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2162 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1830 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1830 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: excomim 2166 excom13 2167 exrot3 2168 eeor 2334 ee4anv 2351 ee4anvOLD 2352 2sb8ef 2356 sbel2x 2474 2sb8e 2530 2euexv 2626 2euex 2636 2eu4 2650 rexcom4 3259 rexcomf 3271 gencbvex 3495 euind 3678 sbccomlemOLD 3816 elvvv 5687 dmuni 5849 dm0rn0OLD 5860 dmcosseqOLDOLD 5914 cnvopab 6079 rncoOLD 6195 coass 6208 oprabidw 7372 oprabid 7373 dfoprab2 7399 uniuni 7690 opabex3d 7892 opabex3rd 7893 opabex3 7894 frxp 8051 domen 8879 xpassen 8979 scott0 9774 dfac5lem1 10009 dfac5lem4OLD 10014 cflemOLD 10132 ltexprlem1 10922 ltexprlem4 10925 fsumcom2 15676 fprodcom2 15886 gsumval3eu 19811 dprd2d2 19953 eldm3 35797 dfdm5 35809 dfrn5 35810 elfuns 35949 dfiota3 35957 brimg 35971 funpartlem 35976 bj-19.12 36795 bj-nnflemee 36797 bj-restuni 37131 sbccom2lem 38164 dmqsblocks 38891 diblsmopel 41210 dicelval3 41219 dihjatcclem4 41460 19.9dev 42247 nnoeomeqom 43345 pm11.6 44425 ax6e2ndeq 44592 e2ebind 44596 ax6e2ndeqVD 44941 e2ebindVD 44944 e2ebindALT 44961 ax6e2ndeqALT 44963 ich2ex 47499 ichexmpl1 47500 elsprel 47506 eliunxp2 48365 |
| Copyright terms: Public domain | W3C validator |