Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1914, ax-6 1972, ax-7 2012, ax-10 2139, ax-12 2173. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2158 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 319 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1832 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1832 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-11 2156 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: excomim 2165 excom13 2166 exrot3 2167 ee4anv 2351 2sb8ev 2354 sbel2x 2474 2sb8e 2535 2euexv 2633 2euex 2643 2eu4 2656 rexcom4 3179 rexcomf 3283 cgsex4gOLD 3467 gencbvex 3478 euind 3654 sbccomlem 3799 elvvv 5653 dmuni 5812 dm0rn0 5823 dmcosseq 5871 rnco 6145 coass 6158 oprabidw 7286 oprabid 7287 dfoprab2 7311 uniuni 7590 opabex3d 7781 opabex3rd 7782 opabex3 7783 frxp 7938 domen 8706 xpassen 8806 scott0 9575 dfac5lem1 9810 dfac5lem4 9813 cflem 9933 ltexprlem1 10723 ltexprlem4 10726 fsumcom2 15414 fprodcom2 15622 gsumval3eu 19420 dprd2d2 19562 cnvoprabOLD 30957 eldm3 33634 dfdm5 33653 dfrn5 33654 elfuns 34144 dfiota3 34152 brimg 34166 funpartlem 34171 bj-19.12 34870 bj-nnflemee 34872 bj-restuni 35195 sbccom2lem 36209 diblsmopel 39112 dicelval3 39121 dihjatcclem4 39362 19.9dev 40106 pm11.6 41899 ax6e2ndeq 42068 e2ebind 42072 ax6e2ndeqVD 42418 e2ebindVD 42421 e2ebindALT 42438 ax6e2ndeqALT 42440 ich2ex 44808 ichexmpl1 44809 elsprel 44815 eliunxp2 45557 |
Copyright terms: Public domain | W3C validator |