| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1910, ax-6 1967, ax-7 2008, ax-10 2142, ax-12 2178. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1829 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1829 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: excomim 2164 excom13 2165 exrot3 2166 eeor 2332 ee4anv 2349 ee4anvOLD 2350 2sb8ef 2354 sbel2x 2472 2sb8e 2528 2euexv 2624 2euex 2634 2eu4 2648 rexcom4 3262 rexcomf 3275 gencbvex 3504 euind 3692 sbccomlemOLD 3830 elvvv 5707 dmuni 5868 dm0rn0 5878 dmcosseqOLD 5930 cnvopab 6098 rnco 6213 coass 6226 oprabidw 7400 oprabid 7401 dfoprab2 7427 uniuni 7718 opabex3d 7923 opabex3rd 7924 opabex3 7925 frxp 8082 domen 8910 xpassen 9012 scott0 9815 dfac5lem1 10052 dfac5lem4OLD 10057 cflemOLD 10175 ltexprlem1 10965 ltexprlem4 10968 fsumcom2 15716 fprodcom2 15926 gsumval3eu 19810 dprd2d2 19952 eldm3 35721 dfdm5 35733 dfrn5 35734 elfuns 35876 dfiota3 35884 brimg 35898 funpartlem 35903 bj-19.12 36722 bj-nnflemee 36724 bj-restuni 37058 sbccom2lem 38091 dmqsblocks 38818 diblsmopel 41138 dicelval3 41147 dihjatcclem4 41388 19.9dev 42175 nnoeomeqom 43274 pm11.6 44354 ax6e2ndeq 44522 e2ebind 44526 ax6e2ndeqVD 44871 e2ebindVD 44874 e2ebindALT 44891 ax6e2ndeqALT 44893 ich2ex 47442 ichexmpl1 47443 elsprel 47449 eliunxp2 48295 |
| Copyright terms: Public domain | W3C validator |