![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1908, ax-6 1965, ax-7 2005, ax-10 2139, ax-12 2175. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2157 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1826 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1826 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-11 2155 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: excomim 2161 excom13 2162 exrot3 2163 eeor 2334 ee4anv 2352 2sb8ef 2357 sbel2x 2477 2sb8e 2533 2euexv 2629 2euex 2639 2eu4 2653 rexcom4 3286 rexcomf 3301 gencbvex 3541 euind 3733 sbccomlemOLD 3879 elvvv 5764 dmuni 5928 dm0rn0 5938 dmcosseqOLD 5991 cnvopab 6160 rnco 6274 coass 6287 oprabidw 7462 oprabid 7463 dfoprab2 7491 uniuni 7781 opabex3d 7989 opabex3rd 7990 opabex3 7991 frxp 8150 domen 9001 xpassen 9105 scott0 9924 dfac5lem1 10161 dfac5lem4OLD 10166 cflemOLD 10284 ltexprlem1 11074 ltexprlem4 11077 fsumcom2 15807 fprodcom2 16017 gsumval3eu 19937 dprd2d2 20079 cnvoprabOLD 32738 eldm3 35741 dfdm5 35754 dfrn5 35755 elfuns 35897 dfiota3 35905 brimg 35919 funpartlem 35924 bj-19.12 36744 bj-nnflemee 36746 bj-restuni 37080 sbccom2lem 38111 diblsmopel 41154 dicelval3 41163 dihjatcclem4 41404 19.9dev 42232 nnoeomeqom 43302 pm11.6 44388 ax6e2ndeq 44557 e2ebind 44561 ax6e2ndeqVD 44907 e2ebindVD 44910 e2ebindALT 44927 ax6e2ndeqALT 44929 ich2ex 47393 ichexmpl1 47394 elsprel 47400 eliunxp2 48179 |
Copyright terms: Public domain | W3C validator |