![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1909, ax-6 1967, ax-7 2007, ax-10 2141, ax-12 2178. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1827 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1827 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: excomim 2164 excom13 2165 exrot3 2166 eeor 2339 ee4anv 2357 2sb8ef 2362 sbel2x 2482 2sb8e 2538 2euexv 2634 2euex 2644 2eu4 2658 rexcom4 3294 rexcomf 3309 gencbvex 3553 euind 3746 sbccomlemOLD 3892 elvvv 5775 dmuni 5939 dm0rn0 5949 dmcosseqOLD 6000 cnvopab 6169 rnco 6283 coass 6296 oprabidw 7479 oprabid 7480 dfoprab2 7508 uniuni 7797 opabex3d 8006 opabex3rd 8007 opabex3 8008 frxp 8167 domen 9021 xpassen 9132 scott0 9955 dfac5lem1 10192 dfac5lem4OLD 10197 cflemOLD 10315 ltexprlem1 11105 ltexprlem4 11108 fsumcom2 15822 fprodcom2 16032 gsumval3eu 19946 dprd2d2 20088 cnvoprabOLD 32734 eldm3 35723 dfdm5 35736 dfrn5 35737 elfuns 35879 dfiota3 35887 brimg 35901 funpartlem 35906 bj-19.12 36727 bj-nnflemee 36729 bj-restuni 37063 sbccom2lem 38084 diblsmopel 41128 dicelval3 41137 dihjatcclem4 41378 19.9dev 42207 nnoeomeqom 43274 pm11.6 44361 ax6e2ndeq 44530 e2ebind 44534 ax6e2ndeqVD 44880 e2ebindVD 44883 e2ebindALT 44900 ax6e2ndeqALT 44902 ich2ex 47342 ichexmpl1 47343 elsprel 47349 eliunxp2 48058 |
Copyright terms: Public domain | W3C validator |