| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1910, ax-6 1967, ax-7 2008, ax-10 2142, ax-12 2178. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1829 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1829 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: excomim 2164 excom13 2165 exrot3 2166 eeor 2332 ee4anv 2349 ee4anvOLD 2350 2sb8ef 2355 sbel2x 2473 2sb8e 2529 2euexv 2625 2euex 2635 2eu4 2649 rexcom4 3265 rexcomf 3279 gencbvex 3510 euind 3698 sbccomlemOLD 3836 elvvv 5717 dmuni 5881 dm0rn0 5891 dmcosseqOLD 5944 cnvopab 6113 rnco 6228 coass 6241 oprabidw 7421 oprabid 7422 dfoprab2 7450 uniuni 7741 opabex3d 7947 opabex3rd 7948 opabex3 7949 frxp 8108 domen 8936 xpassen 9040 scott0 9846 dfac5lem1 10083 dfac5lem4OLD 10088 cflemOLD 10206 ltexprlem1 10996 ltexprlem4 10999 fsumcom2 15747 fprodcom2 15957 gsumval3eu 19841 dprd2d2 19983 eldm3 35755 dfdm5 35767 dfrn5 35768 elfuns 35910 dfiota3 35918 brimg 35932 funpartlem 35937 bj-19.12 36756 bj-nnflemee 36758 bj-restuni 37092 sbccom2lem 38125 dmqsblocks 38852 diblsmopel 41172 dicelval3 41181 dihjatcclem4 41422 19.9dev 42209 nnoeomeqom 43308 pm11.6 44388 ax6e2ndeq 44556 e2ebind 44560 ax6e2ndeqVD 44905 e2ebindVD 44908 e2ebindALT 44925 ax6e2ndeqALT 44927 ich2ex 47473 ichexmpl1 47474 elsprel 47480 eliunxp2 48326 |
| Copyright terms: Public domain | W3C validator |