| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version | ||
| Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1911, ax-6 1968, ax-7 2009, ax-10 2146, ax-12 2182. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
| Ref | Expression |
|---|---|
| excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2164 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
| 3 | 2exnaln 1830 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 4 | 2exnaln 1830 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-11 2162 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: excomim 2168 excom13 2169 exrot3 2170 eeor 2336 ee4anv 2353 ee4anvOLD 2354 2sb8ef 2358 sbel2x 2476 2sb8e 2532 2euexv 2628 2euex 2638 2eu4 2652 rexcom4 3260 rexcomf 3272 gencbvex 3496 euind 3679 sbccomlemOLD 3817 elvvv 5697 dmuni 5860 dm0rn0OLD 5871 dmcosseqOLDOLD 5926 cnvopab 6091 rncoOLD 6208 coass 6221 oprabidw 7386 oprabid 7387 dfoprab2 7413 uniuni 7704 opabex3d 7906 opabex3rd 7907 opabex3 7908 frxp 8065 domen 8894 xpassen 8995 scott0 9790 dfac5lem1 10025 dfac5lem4OLD 10030 cflemOLD 10148 ltexprlem1 10938 ltexprlem4 10941 fsumcom2 15688 fprodcom2 15898 gsumval3eu 19824 dprd2d2 19966 eldm3 35877 dfdm5 35889 dfrn5 35890 elfuns 36029 dfiota3 36037 brimg 36051 funpartlem 36058 bj-19.12 36878 bj-nnflemee 36880 bj-restuni 37214 sbccom2lem 38237 dmqsblocks 39024 diblsmopel 41343 dicelval3 41352 dihjatcclem4 41593 nfe2 42382 19.9dev 42385 nnoeomeqom 43469 pm11.6 44549 ax6e2ndeq 44716 e2ebind 44720 ax6e2ndeqVD 45065 e2ebindVD 45068 e2ebindALT 45085 ax6e2ndeqALT 45087 ich2ex 47630 ichexmpl1 47631 elsprel 47637 eliunxp2 48496 |
| Copyright terms: Public domain | W3C validator |