![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1913, ax-6 1971, ax-7 2011, ax-10 2137, ax-12 2171. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2156 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 319 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1831 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1831 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: excomim 2163 excom13 2164 exrot3 2165 eeor 2329 ee4anv 2347 2sb8ef 2352 sbel2x 2473 2sb8e 2529 2euexv 2627 2euex 2637 2eu4 2650 rexcom4 3285 rexcomf 3300 cgsex4gOLDOLD 3522 gencbvex 3535 euind 3719 sbccomlem 3863 elvvv 5749 dmuni 5912 dm0rn0 5922 dmcosseq 5970 rnco 6248 coass 6261 oprabidw 7436 oprabid 7437 dfoprab2 7463 uniuni 7745 opabex3d 7948 opabex3rd 7949 opabex3 7950 frxp 8108 domen 8953 xpassen 9062 scott0 9877 dfac5lem1 10114 dfac5lem4 10117 cflem 10237 ltexprlem1 11027 ltexprlem4 11030 fsumcom2 15716 fprodcom2 15924 gsumval3eu 19766 dprd2d2 19908 cnvoprabOLD 31932 eldm3 34719 dfdm5 34732 dfrn5 34733 elfuns 34875 dfiota3 34883 brimg 34897 funpartlem 34902 bj-19.12 35627 bj-nnflemee 35629 bj-restuni 35966 sbccom2lem 36980 diblsmopel 40030 dicelval3 40039 dihjatcclem4 40280 19.9dev 41024 nnoeomeqom 42047 pm11.6 43136 ax6e2ndeq 43305 e2ebind 43309 ax6e2ndeqVD 43655 e2ebindVD 43658 e2ebindALT 43675 ax6e2ndeqALT 43677 ich2ex 46122 ichexmpl1 46123 elsprel 46129 eliunxp2 46962 |
Copyright terms: Public domain | W3C validator |