![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > excom | Structured version Visualization version GIF version |
Description: Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) Remove dependencies on ax-5 1914, ax-6 1972, ax-7 2012, ax-10 2138, ax-12 2172. (Revised by Wolf Lammen, 8-Jan-2018.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
Ref | Expression |
---|---|
excom | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2157 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) |
3 | 2exnaln 1832 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
4 | 2exnaln 1832 | . 2 ⊢ (∃𝑦∃𝑥𝜑 ↔ ¬ ∀𝑦∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-11 2155 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: excomim 2164 excom13 2165 exrot3 2166 eeor 2330 ee4anv 2348 2sb8ef 2353 sbel2x 2474 2sb8e 2530 2euexv 2628 2euex 2638 2eu4 2651 rexcom4 3286 rexcomf 3301 cgsex4gOLDOLD 3523 gencbvex 3536 euind 3721 sbccomlem 3865 elvvv 5752 dmuni 5915 dm0rn0 5925 dmcosseq 5973 rnco 6252 coass 6265 oprabidw 7440 oprabid 7441 dfoprab2 7467 uniuni 7749 opabex3d 7952 opabex3rd 7953 opabex3 7954 frxp 8112 domen 8957 xpassen 9066 scott0 9881 dfac5lem1 10118 dfac5lem4 10121 cflem 10241 ltexprlem1 11031 ltexprlem4 11034 fsumcom2 15720 fprodcom2 15928 gsumval3eu 19772 dprd2d2 19914 cnvoprabOLD 31945 eldm3 34731 dfdm5 34744 dfrn5 34745 elfuns 34887 dfiota3 34895 brimg 34909 funpartlem 34914 bj-19.12 35639 bj-nnflemee 35641 bj-restuni 35978 sbccom2lem 36992 diblsmopel 40042 dicelval3 40051 dihjatcclem4 40292 19.9dev 41029 nnoeomeqom 42062 pm11.6 43151 ax6e2ndeq 43320 e2ebind 43324 ax6e2ndeqVD 43670 e2ebindVD 43673 e2ebindALT 43690 ax6e2ndeqALT 43692 ich2ex 46136 ichexmpl1 46137 elsprel 46143 eliunxp2 47009 |
Copyright terms: Public domain | W3C validator |