Proof of Theorem fun11
Step | Hyp | Ref
| Expression |
1 | | dfbi2 475 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ↔ 𝑦 = 𝑤) ↔ ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧))) |
2 | 1 | imbi2i 336 |
. . . . . . 7
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧)))) |
3 | | pm4.76 519 |
. . . . . . 7
⊢ ((((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧))) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧)))) |
4 | | bi2.04 389 |
. . . . . . . 8
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ↔ (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) |
5 | | bi2.04 389 |
. . . . . . . 8
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧)) ↔ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
6 | 4, 5 | anbi12i 627 |
. . . . . . 7
⊢ ((((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧))) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
7 | 2, 3, 6 | 3bitr2i 299 |
. . . . . 6
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
8 | 7 | 2albii 1823 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
9 | | 19.26-2 1874 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
10 | | alcom 2156 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) |
11 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑦 ↔ 𝑧𝐴𝑦)) |
12 | 11 | anbi1d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) ↔ (𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤))) |
13 | 12 | imbi1d 342 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) |
14 | 13 | equsalvw 2007 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
15 | 14 | albii 1822 |
. . . . . . 7
⊢
(∀𝑦∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
16 | 10, 15 | bitri 274 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
17 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) |
18 | 17 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) ↔ (𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤))) |
19 | 18 | imbi1d 342 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
20 | 19 | equsalvw 2007 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
21 | 20 | albii 1822 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
22 | 16, 21 | anbi12i 627 |
. . . . 5
⊢
((∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
23 | 8, 9, 22 | 3bitri 297 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ (∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
24 | 23 | 2albii 1823 |
. . 3
⊢
(∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤(∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
25 | | 19.26-2 1874 |
. . 3
⊢
(∀𝑧∀𝑤(∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ (∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
26 | 24, 25 | bitr2i 275 |
. 2
⊢
((∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |
27 | | fun2cnv 6505 |
. . . 4
⊢ (Fun
◡◡𝐴 ↔ ∀𝑧∃*𝑦 𝑧𝐴𝑦) |
28 | | breq2 5078 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑧𝐴𝑦 ↔ 𝑧𝐴𝑤)) |
29 | 28 | mo4 2566 |
. . . . 5
⊢
(∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
30 | 29 | albii 1822 |
. . . 4
⊢
(∀𝑧∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑧∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
31 | | alcom 2156 |
. . . . 5
⊢
(∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
32 | 31 | albii 1822 |
. . . 4
⊢
(∀𝑧∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
33 | 27, 30, 32 | 3bitri 297 |
. . 3
⊢ (Fun
◡◡𝐴 ↔ ∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
34 | | funcnv2 6502 |
. . . 4
⊢ (Fun
◡𝐴 ↔ ∀𝑤∃*𝑥 𝑥𝐴𝑤) |
35 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑤 ↔ 𝑧𝐴𝑤)) |
36 | 35 | mo4 2566 |
. . . . 5
⊢
(∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
37 | 36 | albii 1822 |
. . . 4
⊢
(∀𝑤∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
38 | | alcom 2156 |
. . . . . 6
⊢
(∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
39 | 38 | albii 1822 |
. . . . 5
⊢
(∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑤∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
40 | | alcom 2156 |
. . . . 5
⊢
(∀𝑤∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
41 | 39, 40 | bitri 274 |
. . . 4
⊢
(∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
42 | 34, 37, 41 | 3bitri 297 |
. . 3
⊢ (Fun
◡𝐴 ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
43 | 33, 42 | anbi12i 627 |
. 2
⊢ ((Fun
◡◡𝐴 ∧ Fun ◡𝐴) ↔ (∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
44 | | alrot4 2158 |
. 2
⊢
(∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |
45 | 26, 43, 44 | 3bitr4i 303 |
1
⊢ ((Fun
◡◡𝐴 ∧ Fun ◡𝐴) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |