Proof of Theorem fun11
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dfbi2 474 | . . . . . . . 8
⊢ ((𝑥 = 𝑧 ↔ 𝑦 = 𝑤) ↔ ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧))) | 
| 2 | 1 | imbi2i 336 | . . . . . . 7
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧)))) | 
| 3 |  | pm4.76 518 | . . . . . . 7
⊢ ((((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧))) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧)))) | 
| 4 |  | bi2.04 387 | . . . . . . . 8
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ↔ (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) | 
| 5 |  | bi2.04 387 | . . . . . . . 8
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧)) ↔ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 6 | 4, 5 | anbi12i 628 | . . . . . . 7
⊢ ((((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧))) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) | 
| 7 | 2, 3, 6 | 3bitr2i 299 | . . . . . 6
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) | 
| 8 | 7 | 2albii 1819 | . . . . 5
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) | 
| 9 |  | 19.26-2 1870 | . . . . 5
⊢
(∀𝑥∀𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) | 
| 10 |  | alcom 2158 | . . . . . . 7
⊢
(∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) | 
| 11 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑦 ↔ 𝑧𝐴𝑦)) | 
| 12 | 11 | anbi1d 631 | . . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) ↔ (𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤))) | 
| 13 | 12 | imbi1d 341 | . . . . . . . . 9
⊢ (𝑥 = 𝑧 → (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) | 
| 14 | 13 | equsalvw 2002 | . . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 15 | 14 | albii 1818 | . . . . . . 7
⊢
(∀𝑦∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 16 | 10, 15 | bitri 275 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 17 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) | 
| 18 | 17 | anbi1d 631 | . . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) ↔ (𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤))) | 
| 19 | 18 | imbi1d 341 | . . . . . . . 8
⊢ (𝑦 = 𝑤 → (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 20 | 19 | equsalvw 2002 | . . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 21 | 20 | albii 1818 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 22 | 16, 21 | anbi12i 628 | . . . . 5
⊢
((∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 23 | 8, 9, 22 | 3bitri 297 | . . . 4
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ (∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 24 | 23 | 2albii 1819 | . . 3
⊢
(∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤(∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 25 |  | 19.26-2 1870 | . . 3
⊢
(∀𝑧∀𝑤(∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ (∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 26 | 24, 25 | bitr2i 276 | . 2
⊢
((∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) | 
| 27 |  | fun2cnv 6636 | . . . 4
⊢ (Fun
◡◡𝐴 ↔ ∀𝑧∃*𝑦 𝑧𝐴𝑦) | 
| 28 |  | breq2 5146 | . . . . . 6
⊢ (𝑦 = 𝑤 → (𝑧𝐴𝑦 ↔ 𝑧𝐴𝑤)) | 
| 29 | 28 | mo4 2565 | . . . . 5
⊢
(∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 30 | 29 | albii 1818 | . . . 4
⊢
(∀𝑧∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑧∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 31 |  | alcom 2158 | . . . . 5
⊢
(∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 32 | 31 | albii 1818 | . . . 4
⊢
(∀𝑧∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 33 | 27, 30, 32 | 3bitri 297 | . . 3
⊢ (Fun
◡◡𝐴 ↔ ∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) | 
| 34 |  | funcnv2 6633 | . . . 4
⊢ (Fun
◡𝐴 ↔ ∀𝑤∃*𝑥 𝑥𝐴𝑤) | 
| 35 |  | breq1 5145 | . . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑤 ↔ 𝑧𝐴𝑤)) | 
| 36 | 35 | mo4 2565 | . . . . 5
⊢
(∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 37 | 36 | albii 1818 | . . . 4
⊢
(∀𝑤∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 38 |  | alcom 2158 | . . . . . 6
⊢
(∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 39 | 38 | albii 1818 | . . . . 5
⊢
(∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑤∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 40 |  | alcom 2158 | . . . . 5
⊢
(∀𝑤∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 41 | 39, 40 | bitri 275 | . . . 4
⊢
(∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 42 | 34, 37, 41 | 3bitri 297 | . . 3
⊢ (Fun
◡𝐴 ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) | 
| 43 | 33, 42 | anbi12i 628 | . 2
⊢ ((Fun
◡◡𝐴 ∧ Fun ◡𝐴) ↔ (∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) | 
| 44 |  | alrot4 2160 | . 2
⊢
(∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) | 
| 45 | 26, 43, 44 | 3bitr4i 303 | 1
⊢ ((Fun
◡◡𝐴 ∧ Fun ◡𝐴) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |