|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > alrot3 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| alrot3 | ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alcom 2159 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑥∀𝑧𝜑) | |
| 2 | alcom 2159 | . . 3 ⊢ (∀𝑥∀𝑧𝜑 ↔ ∀𝑧∀𝑥𝜑) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) | 
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-11 2157 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: alrot4 2161 nfnid 5375 raliunxp 5850 dff13 7275 cosscnvssid3 38477 undmrnresiss 43617 | 
| Copyright terms: Public domain | W3C validator |