| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > alsc2d | Structured version Visualization version GIF version | ||
| Description: Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| Ref | Expression |
|---|---|
| alsc2d.1 | ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) |
| Ref | Expression |
|---|---|
| alsc2d | ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alsc2d.1 | . . 3 ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) | |
| 2 | df-alsc 49316 | . . 3 ⊢ (∀!𝑥 ∈ 𝐴𝜓 ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 ∀!walsc 49314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-alsc 49316 |
| This theorem is referenced by: alscn0d 49322 |
| Copyright terms: Public domain | W3C validator |