Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  alscn0d Structured version   Visualization version   GIF version

Theorem alscn0d 49025
Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018.)
Hypothesis
Ref Expression
alscn0d.1 (𝜑 → ∀!𝑥𝐴𝜓)
Assertion
Ref Expression
alscn0d (𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem alscn0d
StepHypRef Expression
1 alscn0d.1 . . 3 (𝜑 → ∀!𝑥𝐴𝜓)
21alsc2d 49024 . 2 (𝜑 → ∃𝑥 𝑥𝐴)
3 n0 4358 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
42, 3sylibr 234 1 (𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1775  wcel 2105  wne 2937  c0 4338  ∀!walsc 49017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-ne 2938  df-dif 3965  df-nul 4339  df-alsc 49019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator