Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > alscn0d | Structured version Visualization version GIF version |
Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018.) |
Ref | Expression |
---|---|
alscn0d.1 | ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) |
Ref | Expression |
---|---|
alscn0d | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alscn0d.1 | . . 3 ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) | |
2 | 1 | alsc2d 46498 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
3 | n0 4280 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ∀!walsc 46491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-dif 3890 df-nul 4257 df-alsc 46493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |