![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > alscn0d | Structured version Visualization version GIF version |
Description: Deduction rule: Given "all some" applied to a class, the class is not the empty set. (Contributed by David A. Wheeler, 23-Oct-2018.) |
Ref | Expression |
---|---|
alscn0d.1 | ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) |
Ref | Expression |
---|---|
alscn0d | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alscn0d.1 | . . 3 ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) | |
2 | 1 | alsc2d 48878 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
3 | n0 4376 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 ∀!walsc 48871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ne 2947 df-dif 3979 df-nul 4353 df-alsc 48873 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |