|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > an13s | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) | 
| Ref | Expression | 
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | 
| Ref | Expression | 
|---|---|
| an13s | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | an12s.1 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 3 | 2 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) | 
| 4 | 3 | imp32 418 | 1 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: cusgrfilem1 29474 abfmpeld 32665 | 
| Copyright terms: Public domain | W3C validator |