| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an13s | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| an13s | ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12s.1 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | exp32 420 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 4 | 3 | imp32 418 | 1 ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: cusgrfilem1 29440 abfmpeld 32637 |
| Copyright terms: Public domain | W3C validator |