Home | Metamath
Proof Explorer Theorem List (p. 7 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | syldanl 601 | A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) | ||
Theorem | syland 602 | A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) | ||
Theorem | sylani 603 | A syllogism inference. (Contributed by NM, 2-May-1996.) |
⊢ (𝜑 → 𝜒) & ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜓 → ((𝜑 ∧ 𝜃) → 𝜏)) | ||
Theorem | sylan2d 604 | A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜒) → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → 𝜏)) | ||
Theorem | sylan2i 605 | A syllogism inference. (Contributed by NM, 1-Aug-1994.) |
⊢ (𝜑 → 𝜃) & ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜓 → ((𝜒 ∧ 𝜑) → 𝜏)) | ||
Theorem | syl2ani 606 | A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
⊢ (𝜑 → 𝜒) & ⊢ (𝜂 → 𝜃) & ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) | ||
Theorem | syl2and 607 | A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) | ||
Theorem | anim12d 608 | Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) | ||
Theorem | anim12d1 609 | Variant of anim12d 608 where the second implication does not depend on the antecedent. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → 𝜏) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) | ||
Theorem | anim1d 610 | Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) | ||
Theorem | anim2d 611 | Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓) → (𝜃 ∧ 𝜒))) | ||
Theorem | anim12i 612 | Conjoin antecedents and consequents of two premises. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 14-Dec-2013.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)) | ||
Theorem | anim12ci 613 | Variant of anim12i 612 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜃 ∧ 𝜓)) | ||
Theorem | anim1i 614 | Introduce conjunct to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | ||
Theorem | anim1ci 615 | Introduce conjunct to both sides of an implication. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜒 ∧ 𝜓)) | ||
Theorem | anim2i 616 | Introduce conjunct to both sides of an implication. (Contributed by NM, 3-Jan-1993.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) | ||
Theorem | anim12ii 617 | Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007.) (Proof shortened by Wolf Lammen, 19-Jul-2013.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜓 → 𝜏)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → (𝜒 ∧ 𝜏))) | ||
Theorem | anim12dan 618 | Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) | ||
Theorem | im2anan9 619 | Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | ||
Theorem | im2anan9r 620 | Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | ||
Theorem | pm3.45 621 | Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) | ||
Theorem | anbi2i 622 | Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) | ||
Theorem | anbi1i 623 | Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) | ||
Theorem | anbi2ci 624 | Variant of anbi2i 622 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓)) | ||
Theorem | anbi1ci 625 | Variant of anbi1i 623 with commutation. (Contributed by Peter Mazsa, 7-Mar-2020.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜓 ∧ 𝜒)) | ||
Theorem | anbi12i 626 | Conjoin both sides of two equivalences. (Contributed by NM, 12-Mar-1993.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) | ||
Theorem | anbi12ci 627 | Variant of anbi12i 626 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) | ||
Theorem | anbi2d 628 | Deduction adding a left conjunct to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒))) | ||
Theorem | anbi1d 629 | Deduction adding a right conjunct to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | anbi12d 630 | Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 26-May-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) | ||
Theorem | anbi1 631 | Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | anbi2 632 | Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 16-Nov-2013.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓))) | ||
Theorem | anbi1cd 633 | Introduce a proposition as left conjunct on the left-hand side and right conjunct on the right-hand side of an equivalence. Deduction form. (Contributed by Peter Mazsa, 22-May-2021.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | pm4.38 634 | Theorem *4.38 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | bi2anan9 635 | Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜏 ↔ 𝜂)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | ||
Theorem | bi2anan9r 636 | Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜏 ↔ 𝜂)) ⇒ ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜂))) | ||
Theorem | bi2bian9 637 | Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜏 ↔ 𝜂)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ↔ 𝜏) ↔ (𝜒 ↔ 𝜂))) | ||
Theorem | bianass 638 | An inference to merge two lists of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜂 ∧ 𝜓) ∧ 𝜒)) | ||
Theorem | bianassc 639 | An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ ((𝜓 ∧ 𝜂) ∧ 𝜒)) | ||
Theorem | an21 640 | Swap two conjuncts. (Contributed by Peter Mazsa, 18-Sep-2022.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | ||
Theorem | an12 641 | Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Peter Mazsa, 18-Sep-2022.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | ||
Theorem | an32 642 | A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof shortened by Wolf Lammen, 25-Dec-2012.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | an13 643 | A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) | ||
Theorem | an31 644 | A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
Theorem | an12s 645 | Swap two conjuncts in antecedent. The label suffix "s" means that an12 641 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) | ||
Theorem | ancom2s 646 | Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) | ||
Theorem | an13s 647 | Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) | ||
Theorem | an32s 648 | Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) | ||
Theorem | ancom1s 649 | Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) | ||
Theorem | an31s 650 | Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) | ||
Theorem | anass1rs 651 | Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) | ||
Theorem | an4 652 | Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) | ||
Theorem | an42 653 | Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) | ||
Theorem | an43 654 | Rearrangement of 4 conjuncts. (Contributed by Rodolfo Medina, 24-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜒))) | ||
Theorem | an3 655 | A rearrangement of conjuncts. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → (𝜑 ∧ 𝜃)) | ||
Theorem | an4s 656 | Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) | ||
Theorem | an42s 657 | Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) | ||
Theorem | anabs1 658 | Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | ||
Theorem | anabs5 659 | Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | ||
Theorem | anabs7 660 | Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 17-Nov-2013.) |
⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | ||
Theorem | anabsan 661 | Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.) |
⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabss1 662 | Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabss4 663 | Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) |
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabss5 664 | Absorption of antecedent into conjunction. (Contributed by NM, 10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.) |
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabsi5 665 | Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabsi6 666 | Absorption of antecedent into conjunction. (Contributed by NM, 14-Aug-2000.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜑) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabsi7 667 | Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabsi8 668 | Absorption of antecedent into conjunction. (Contributed by NM, 26-Sep-1999.) |
⊢ (𝜓 → ((𝜓 ∧ 𝜑) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabss7 669 | Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 19-Nov-2013.) |
⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabsan2 670 | Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anabss3 671 | Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | anandi 672 | Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) | ||
Theorem | anandir 673 | Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) | ||
Theorem | anandis 674 | Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) | ||
Theorem | anandirs 675 | Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) | ||
Theorem | sylanl1 676 | A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
⊢ (𝜑 → 𝜓) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | sylanl2 677 | A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
⊢ (𝜑 → 𝜒) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) | ||
Theorem | sylanr1 678 | A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → 𝜏) | ||
Theorem | sylanr2 679 | A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
⊢ (𝜑 → 𝜃) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜑)) → 𝜏) | ||
Theorem | syl6an 680 | A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜒 → 𝜏)) | ||
Theorem | syl2an2r 681 | syl2anr 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Mar-2022.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜏) | ||
Theorem | syl2an2 682 | syl2an 595 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ 𝜑) → 𝜃) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | mpdan 683 | An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | mpancom 684 | An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
⊢ (𝜓 → 𝜑) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜓 → 𝜒) | ||
Theorem | mpidan 685 | A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | mpan 686 | An inference based on modus ponens. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
⊢ 𝜑 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜓 → 𝜒) | ||
Theorem | mpan2 687 | An inference based on modus ponens. (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | mp2an 688 | An inference based on modus ponens. (Contributed by NM, 13-Apr-1995.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
Theorem | mp4an 689 | An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ 𝜏 | ||
Theorem | mpan2d 690 | A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | mpand 691 | A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜒 → 𝜃)) | ||
Theorem | mpani 692 | An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
⊢ 𝜓 & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜒 → 𝜃)) | ||
Theorem | mpan2i 693 | An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
⊢ 𝜒 & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | mp2ani 694 | An inference based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mp2and 695 | A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mpanl1 696 | An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
⊢ 𝜑 & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | mpanl2 697 | An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ 𝜓 & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | mpanl12 698 | An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | mpanr1 699 | An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ 𝜓 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | mpanr2 700 | An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
⊢ 𝜒 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |