Proof of Theorem abfmpeld
Step | Hyp | Ref
| Expression |
1 | | abfmpeld.2 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑦 ∣ 𝜓} ∈ V) |
2 | 1 | alrimiv 1931 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥{𝑦 ∣ 𝜓} ∈ V) |
3 | | csbexg 5229 |
. . . . . . . . 9
⊢
(∀𝑥{𝑦 ∣ 𝜓} ∈ V → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜓} ∈ V) |
4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜓} ∈ V) |
5 | | abfmpeld.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜓}) |
6 | 5 | fvmpts 6860 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜓} ∈ V) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜓}) |
7 | 4, 6 | sylan2 592 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜓}) |
8 | | csbab 4368 |
. . . . . . 7
⊢
⦋𝐴 /
𝑥⦌{𝑦 ∣ 𝜓} = {𝑦 ∣ [𝐴 / 𝑥]𝜓} |
9 | 7, 8 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → (𝐹‘𝐴) = {𝑦 ∣ [𝐴 / 𝑥]𝜓}) |
10 | 9 | eleq2d 2824 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜓})) |
11 | 10 | adantl 481 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ (𝐴 ∈ 𝑉 ∧ 𝜑)) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜓})) |
12 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝜑) ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝑉) |
13 | | abfmpeld.3 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
14 | 13 | ancomsd 465 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒))) |
15 | 14 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒))) |
16 | 15 | impl 455 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝜑) ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
17 | 12, 16 | sbcied 3756 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝜑) ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
18 | 17 | ex 412 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒))) |
19 | 18 | alrimiv 1931 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝜑) → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒))) |
20 | | elabgt 3596 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒))) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜓} ↔ 𝜒)) |
21 | 19, 20 | sylan2 592 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ (𝐴 ∈ 𝑉 ∧ 𝜑)) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜓} ↔ 𝜒)) |
22 | 11, 21 | bitrd 278 |
. . 3
⊢ ((𝐵 ∈ 𝑊 ∧ (𝐴 ∈ 𝑉 ∧ 𝜑)) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜒)) |
23 | 22 | an13s 647 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜒)) |
24 | 23 | ex 412 |
1
⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜒))) |