Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an42s 658 sotr2 5546 somin2 6055 f1elima 7168 f1imaeq 7170 soisoi 7231 isosolem 7250 xpexr2 7802 smoword 8232 unxpdomlem3 9082 fiming 9315 fiinfg 9316 sornom 10093 fin1a2s 10230 mul4r 11204 mulsub 11478 leltadd 11519 ltord1 11561 leord1 11562 eqord1 11563 divmul24 11739 expcan 13947 ltexp2 13948 bhmafibid2 15237 fsum 15491 fprod 15710 isprm5 16471 ramub 16773 setcinv 17864 grpidpropd 18405 gsumpropd2lem 18422 cmnpropd 19455 gsumcom3 19638 unitpropd 19998 lidl1el 20552 1marepvmarrepid 21787 1marepvsma1 21795 ordtrest2 22418 filuni 23099 haustsms2 23351 blcomps 23609 blcom 23610 metnrmlem3 24087 cnmpopc 24154 icoopnst 24165 icccvx 24176 equivcfil 24526 volcn 24833 dvmptfsum 25202 cxple 25913 cxple3 25919 uhgr2edg 27673 lnosub 29219 chirredlem2 30851 metider 31940 ordtrest2NEW 31969 fsum2dsub 32683 finxpreclem2 35619 fin2so 35822 cover2 35930 filbcmb 35956 isdrngo2 36174 crngohomfo 36222 unichnidl 36247 cdleme50eq 38765 dvhvaddcomN 39320 ismrc 40731 prproropf1olem4 45215 |
Copyright terms: Public domain | W3C validator |