![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an42s 660 sotr2 5641 somin2 6167 f1elima 7300 f1imaeq 7302 soisoi 7364 isosolem 7383 xpexr2 7959 smoword 8422 unxpdomlem3 9315 fiming 9567 fiinfg 9568 sornom 10346 fin1a2s 10483 mul4r 11459 mulsub 11733 leltadd 11774 ltord1 11816 leord1 11817 eqord1 11818 divmul24 11998 expcan 14219 ltexp2 14220 bhmafibid2 15515 fsum 15768 fprod 15989 isprm5 16754 ramub 17060 setcinv 18157 grpidpropd 18700 gsumpropd2lem 18717 cmnpropd 19833 gsumcom3 20020 unitpropd 20443 lidl1el 21259 1marepvmarrepid 22602 1marepvsma1 22610 ordtrest2 23233 filuni 23914 haustsms2 24166 blcomps 24424 blcom 24425 metnrmlem3 24902 cnmpopc 24974 icoopnst 24988 icccvx 25000 equivcfil 25352 volcn 25660 dvmptfsum 26033 cxple 26755 cxple3 26761 om2noseqlt2 28324 om2noseqf1o 28325 uhgr2edg 29243 lnosub 30791 chirredlem2 32423 metider 33840 ordtrest2NEW 33869 fsum2dsub 34584 finxpreclem2 37356 fin2so 37567 cover2 37675 filbcmb 37700 isdrngo2 37918 crngohomfo 37966 unichnidl 37991 cdleme50eq 40498 dvhvaddcomN 41053 ismrc 42657 prproropf1olem4 47380 |
Copyright terms: Public domain | W3C validator |