![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an42s 660 sotr2 5616 somin2 6135 f1elima 7267 f1imaeq 7269 soisoi 7330 isosolem 7349 xpexr2 7921 smoword 8380 unxpdomlem3 9268 fiming 9513 fiinfg 9514 sornom 10292 fin1a2s 10429 mul4r 11405 mulsub 11679 leltadd 11720 ltord1 11762 leord1 11763 eqord1 11764 divmul24 11940 expcan 14157 ltexp2 14158 bhmafibid2 15437 fsum 15690 fprod 15909 isprm5 16669 ramub 16973 setcinv 18070 grpidpropd 18613 gsumpropd2lem 18630 cmnpropd 19737 gsumcom3 19924 unitpropd 20345 lidl1el 21111 1marepvmarrepid 22464 1marepvsma1 22472 ordtrest2 23095 filuni 23776 haustsms2 24028 blcomps 24286 blcom 24287 metnrmlem3 24764 cnmpopc 24836 icoopnst 24850 icccvx 24862 equivcfil 25214 volcn 25522 dvmptfsum 25894 cxple 26616 cxple3 26622 om2noseqlt2 28160 om2noseqf1o 28161 uhgr2edg 29008 lnosub 30556 chirredlem2 32188 metider 33431 ordtrest2NEW 33460 fsum2dsub 34175 finxpreclem2 36805 fin2so 37015 cover2 37123 filbcmb 37148 isdrngo2 37366 crngohomfo 37414 unichnidl 37439 cdleme50eq 39951 dvhvaddcomN 40506 ismrc 42043 prproropf1olem4 46769 |
Copyright terms: Public domain | W3C validator |