| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 sotr2 5565 somin2 6088 f1elima 7204 f1imaeq 7206 soisoi 7269 isosolem 7288 xpexr2 7859 smoword 8296 unxpdomlem3 9157 fiming 9409 fiinfg 9410 sornom 10190 fin1a2s 10327 mul4r 11303 mulsub 11581 leltadd 11622 ltord1 11664 leord1 11665 eqord1 11666 divmul24 11846 expcan 14094 ltexp2 14095 bhmafibid2 15394 fsum 15645 fprod 15866 isprm5 16636 ramub 16943 setcinv 18015 grpidpropd 18554 gsumpropd2lem 18571 cmnpropd 19688 gsumcom3 19875 unitpropd 20320 lidl1el 21151 1marepvmarrepid 22478 1marepvsma1 22486 ordtrest2 23107 filuni 23788 haustsms2 24040 blcomps 24297 blcom 24298 metnrmlem3 24766 cnmpopc 24838 icoopnst 24852 icccvx 24864 equivcfil 25215 volcn 25523 dvmptfsum 25895 cxple 26620 cxple3 26626 om2noseqlt2 28217 om2noseqf1o 28218 uhgr2edg 29171 lnosub 30721 chirredlem2 32353 metider 33860 ordtrest2NEW 33889 fsum2dsub 34574 finxpreclem2 37363 fin2so 37586 cover2 37694 filbcmb 37719 isdrngo2 37937 crngohomfo 37985 unichnidl 38010 cdleme50eq 40520 dvhvaddcomN 41075 ismrc 42674 prproropf1olem4 47491 pgnbgreunbgrlem4 48093 |
| Copyright terms: Public domain | W3C validator |