![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 452 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 587 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: an42s 652 sotr2 5260 somin2 5747 f1elima 6746 f1imaeq 6748 soisoi 6804 isosolem 6823 xpexr2 7340 smoword 7700 unxpdomlem3 8406 fiming 8644 fiinfg 8645 sornom 9385 fin1a2s 9522 mulsub 10763 leltadd 10802 ltord1 10844 leord1 10845 eqord1 10846 divmul24 11019 expcan 13163 ltexp2 13164 fsum 14789 fprod 15005 isprm5 15749 ramub 16047 setcinv 17051 grpidpropd 17573 gsumpropd2lem 17585 cmnpropd 18514 unitpropd 19010 lidl1el 19538 gsumcom3 20527 1marepvmarrepid 20704 1marepvsma1 20712 ordtrest2 21334 filuni 22014 haustsms2 22265 blcomps 22523 blcom 22524 metnrmlem3 22989 cnmpt2pc 23052 icoopnst 23063 icccvx 23074 equivcfil 23422 volcn 23711 dvmptfsum 24076 cxple 24779 cxple3 24785 uhgr2edg 26433 lnosub 28131 chirredlem2 29767 bhmafibid2 30153 metider 30445 ordtrest2NEW 30477 fsum2dsub 31197 finxpreclem2 33717 fin2so 33877 cover2 33988 filbcmb 34015 isdrngo2 34236 crngohomfo 34284 unichnidl 34309 cdleme50eq 36554 dvhvaddcomN 37109 ismrc 38038 |
Copyright terms: Public domain | W3C validator |