| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 sotr2 5595 somin2 6124 f1elima 7256 f1imaeq 7258 soisoi 7321 isosolem 7340 xpexr2 7915 smoword 8380 unxpdomlem3 9260 fiming 9512 fiinfg 9513 sornom 10291 fin1a2s 10428 mul4r 11404 mulsub 11680 leltadd 11721 ltord1 11763 leord1 11764 eqord1 11765 divmul24 11945 expcan 14187 ltexp2 14188 bhmafibid2 15485 fsum 15736 fprod 15957 isprm5 16726 ramub 17033 setcinv 18103 grpidpropd 18640 gsumpropd2lem 18657 cmnpropd 19772 gsumcom3 19959 unitpropd 20377 lidl1el 21187 1marepvmarrepid 22513 1marepvsma1 22521 ordtrest2 23142 filuni 23823 haustsms2 24075 blcomps 24332 blcom 24333 metnrmlem3 24801 cnmpopc 24873 icoopnst 24887 icccvx 24899 equivcfil 25251 volcn 25559 dvmptfsum 25931 cxple 26656 cxple3 26662 om2noseqlt2 28246 om2noseqf1o 28247 uhgr2edg 29187 lnosub 30740 chirredlem2 32372 metider 33925 ordtrest2NEW 33954 fsum2dsub 34639 finxpreclem2 37408 fin2so 37631 cover2 37739 filbcmb 37764 isdrngo2 37982 crngohomfo 38030 unichnidl 38055 cdleme50eq 40560 dvhvaddcomN 41115 ismrc 42724 prproropf1olem4 47520 |
| Copyright terms: Public domain | W3C validator |