Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 592 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an42s 657 sotr2 5526 somin2 6029 f1elima 7117 f1imaeq 7119 soisoi 7179 isosolem 7198 xpexr2 7740 smoword 8168 unxpdomlem3 8958 fiming 9187 fiinfg 9188 sornom 9964 fin1a2s 10101 mul4r 11074 mulsub 11348 leltadd 11389 ltord1 11431 leord1 11432 eqord1 11433 divmul24 11609 expcan 13815 ltexp2 13816 bhmafibid2 15106 fsum 15360 fprod 15579 isprm5 16340 ramub 16642 setcinv 17721 grpidpropd 18261 gsumpropd2lem 18278 cmnpropd 19311 gsumcom3 19494 unitpropd 19854 lidl1el 20402 1marepvmarrepid 21632 1marepvsma1 21640 ordtrest2 22263 filuni 22944 haustsms2 23196 blcomps 23454 blcom 23455 metnrmlem3 23930 cnmpopc 23997 icoopnst 24008 icccvx 24019 equivcfil 24368 volcn 24675 dvmptfsum 25044 cxple 25755 cxple3 25761 uhgr2edg 27478 lnosub 29022 chirredlem2 30654 metider 31746 ordtrest2NEW 31775 fsum2dsub 32487 finxpreclem2 35488 fin2so 35691 cover2 35799 filbcmb 35825 isdrngo2 36043 crngohomfo 36091 unichnidl 36116 cdleme50eq 38482 dvhvaddcomN 39037 ismrc 40439 prproropf1olem4 44846 |
Copyright terms: Public domain | W3C validator |