| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 sotr2 5561 somin2 6087 f1elima 7203 f1imaeq 7205 soisoi 7268 isosolem 7287 xpexr2 7855 smoword 8292 unxpdomlem3 9148 fiming 9390 fiinfg 9391 sornom 10174 fin1a2s 10311 mul4r 11288 mulsub 11566 leltadd 11607 ltord1 11649 leord1 11650 eqord1 11651 divmul24 11831 expcan 14082 ltexp2 14083 bhmafibid2 15382 fsum 15633 fprod 15854 isprm5 16624 ramub 16931 setcinv 18003 grpidpropd 18576 gsumpropd2lem 18593 cmnpropd 19709 gsumcom3 19896 unitpropd 20341 lidl1el 21169 1marepvmarrepid 22496 1marepvsma1 22504 ordtrest2 23125 filuni 23806 haustsms2 24058 blcomps 24314 blcom 24315 metnrmlem3 24783 cnmpopc 24855 icoopnst 24869 icccvx 24881 equivcfil 25232 volcn 25540 dvmptfsum 25912 cxple 26637 cxple3 26643 om2noseqlt2 28236 om2noseqf1o 28237 uhgr2edg 29193 lnosub 30746 chirredlem2 32378 metider 33914 ordtrest2NEW 33943 fsum2dsub 34627 finxpreclem2 37441 fin2so 37653 cover2 37761 filbcmb 37786 isdrngo2 38004 crngohomfo 38052 unichnidl 38077 cdleme50eq 40646 dvhvaddcomN 41201 ismrc 42799 prproropf1olem4 47611 pgnbgreunbgrlem4 48224 |
| Copyright terms: Public domain | W3C validator |