Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 463 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 595 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: an42s 660 sotr2 5477 somin2 5971 f1elima 7018 f1imaeq 7020 soisoi 7080 isosolem 7099 xpexr2 7634 smoword 8018 unxpdomlem3 8767 fiming 9000 fiinfg 9001 sornom 9742 fin1a2s 9879 mul4r 10852 mulsub 11126 leltadd 11167 ltord1 11209 leord1 11210 eqord1 11211 divmul24 11387 expcan 13588 ltexp2 13589 bhmafibid2 14879 fsum 15130 fprod 15348 isprm5 16108 ramub 16409 setcinv 17421 grpidpropd 17943 gsumpropd2lem 17960 cmnpropd 18988 gsumcom3 19171 unitpropd 19523 lidl1el 20064 1marepvmarrepid 21280 1marepvsma1 21288 ordtrest2 21909 filuni 22590 haustsms2 22842 blcomps 23100 blcom 23101 metnrmlem3 23567 cnmpopc 23634 icoopnst 23645 icccvx 23656 equivcfil 24004 volcn 24311 dvmptfsum 24679 cxple 25390 cxple3 25396 uhgr2edg 27102 lnosub 28646 chirredlem2 30278 metider 31369 ordtrest2NEW 31398 fsum2dsub 32110 finxpreclem2 35113 fin2so 35350 cover2 35458 filbcmb 35484 isdrngo2 35702 crngohomfo 35750 unichnidl 35775 cdleme50eq 38143 dvhvaddcomN 38698 ismrc 40043 prproropf1olem4 44419 |
Copyright terms: Public domain | W3C validator |