| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 sotr2 5556 somin2 6079 f1elima 7192 f1imaeq 7194 soisoi 7257 isosolem 7276 xpexr2 7844 smoword 8281 unxpdomlem3 9137 fiming 9379 fiinfg 9380 sornom 10160 fin1a2s 10297 mul4r 11274 mulsub 11552 leltadd 11593 ltord1 11635 leord1 11636 eqord1 11637 divmul24 11817 expcan 14068 ltexp2 14069 bhmafibid2 15368 fsum 15619 fprod 15840 isprm5 16610 ramub 16917 setcinv 17989 grpidpropd 18562 gsumpropd2lem 18579 cmnpropd 19696 gsumcom3 19883 unitpropd 20328 lidl1el 21156 1marepvmarrepid 22483 1marepvsma1 22491 ordtrest2 23112 filuni 23793 haustsms2 24045 blcomps 24301 blcom 24302 metnrmlem3 24770 cnmpopc 24842 icoopnst 24856 icccvx 24868 equivcfil 25219 volcn 25527 dvmptfsum 25899 cxple 26624 cxple3 26630 om2noseqlt2 28223 om2noseqf1o 28224 uhgr2edg 29179 lnosub 30729 chirredlem2 32361 metider 33897 ordtrest2NEW 33926 fsum2dsub 34610 finxpreclem2 37403 fin2so 37626 cover2 37734 filbcmb 37759 isdrngo2 37977 crngohomfo 38025 unichnidl 38050 cdleme50eq 40559 dvhvaddcomN 41114 ismrc 42713 prproropf1olem4 47516 pgnbgreunbgrlem4 48129 |
| Copyright terms: Public domain | W3C validator |