![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 458 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 591 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: an42s 659 sotr2 5621 somin2 6141 f1elima 7271 f1imaeq 7273 soisoi 7333 isosolem 7352 xpexr2 7925 smoword 8385 unxpdomlem3 9275 fiming 9521 fiinfg 9522 sornom 10300 fin1a2s 10437 mul4r 11413 mulsub 11687 leltadd 11728 ltord1 11770 leord1 11771 eqord1 11772 divmul24 11948 expcan 14165 ltexp2 14166 bhmafibid2 15445 fsum 15698 fprod 15917 isprm5 16677 ramub 16981 setcinv 18078 grpidpropd 18621 gsumpropd2lem 18638 cmnpropd 19750 gsumcom3 19937 unitpropd 20360 lidl1el 21126 1marepvmarrepid 22507 1marepvsma1 22515 ordtrest2 23138 filuni 23819 haustsms2 24071 blcomps 24329 blcom 24330 metnrmlem3 24807 cnmpopc 24879 icoopnst 24893 icccvx 24905 equivcfil 25257 volcn 25565 dvmptfsum 25937 cxple 26659 cxple3 26665 om2noseqlt2 28207 om2noseqf1o 28208 uhgr2edg 29077 lnosub 30625 chirredlem2 32257 metider 33565 ordtrest2NEW 33594 fsum2dsub 34309 finxpreclem2 36939 fin2so 37150 cover2 37258 filbcmb 37283 isdrngo2 37501 crngohomfo 37549 unichnidl 37574 cdleme50eq 40083 dvhvaddcomN 40638 ismrc 42186 prproropf1olem4 46909 |
Copyright terms: Public domain | W3C validator |