![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 458 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 591 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: an42s 657 sotr2 5619 somin2 6135 f1elima 7264 f1imaeq 7266 soisoi 7327 isosolem 7346 xpexr2 7912 smoword 8368 unxpdomlem3 9254 fiming 9495 fiinfg 9496 sornom 10274 fin1a2s 10411 mul4r 11387 mulsub 11661 leltadd 11702 ltord1 11744 leord1 11745 eqord1 11746 divmul24 11922 expcan 14138 ltexp2 14139 bhmafibid2 15417 fsum 15670 fprod 15889 isprm5 16648 ramub 16950 setcinv 18044 grpidpropd 18587 gsumpropd2lem 18604 cmnpropd 19700 gsumcom3 19887 unitpropd 20308 lidl1el 20990 1marepvmarrepid 22297 1marepvsma1 22305 ordtrest2 22928 filuni 23609 haustsms2 23861 blcomps 24119 blcom 24120 metnrmlem3 24597 cnmpopc 24669 icoopnst 24683 icccvx 24695 equivcfil 25047 volcn 25355 dvmptfsum 25727 cxple 26439 cxple3 26445 uhgr2edg 28732 lnosub 30279 chirredlem2 31911 metider 33172 ordtrest2NEW 33201 fsum2dsub 33917 finxpreclem2 36574 fin2so 36778 cover2 36886 filbcmb 36911 isdrngo2 37129 crngohomfo 37177 unichnidl 37202 cdleme50eq 39715 dvhvaddcomN 40270 ismrc 41741 prproropf1olem4 46472 |
Copyright terms: Public domain | W3C validator |