![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: an42s 661 sotr2 5629 somin2 6157 f1elima 7282 f1imaeq 7284 soisoi 7347 isosolem 7366 xpexr2 7941 smoword 8404 unxpdomlem3 9285 fiming 9535 fiinfg 9536 sornom 10314 fin1a2s 10451 mul4r 11427 mulsub 11703 leltadd 11744 ltord1 11786 leord1 11787 eqord1 11788 divmul24 11968 expcan 14205 ltexp2 14206 bhmafibid2 15501 fsum 15752 fprod 15973 isprm5 16740 ramub 17046 setcinv 18143 grpidpropd 18687 gsumpropd2lem 18704 cmnpropd 19823 gsumcom3 20010 unitpropd 20433 lidl1el 21253 1marepvmarrepid 22596 1marepvsma1 22604 ordtrest2 23227 filuni 23908 haustsms2 24160 blcomps 24418 blcom 24419 metnrmlem3 24896 cnmpopc 24968 icoopnst 24982 icccvx 24994 equivcfil 25346 volcn 25654 dvmptfsum 26027 cxple 26751 cxple3 26757 om2noseqlt2 28320 om2noseqf1o 28321 uhgr2edg 29239 lnosub 30787 chirredlem2 32419 metider 33854 ordtrest2NEW 33883 fsum2dsub 34600 finxpreclem2 37372 fin2so 37593 cover2 37701 filbcmb 37726 isdrngo2 37944 crngohomfo 37992 unichnidl 38017 cdleme50eq 40523 dvhvaddcomN 41078 ismrc 42688 prproropf1olem4 47430 |
Copyright terms: Public domain | W3C validator |