Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 460 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: an42s 658 sotr2 5535 somin2 6040 f1elima 7136 f1imaeq 7138 soisoi 7199 isosolem 7218 xpexr2 7766 smoword 8197 unxpdomlem3 9029 fiming 9257 fiinfg 9258 sornom 10033 fin1a2s 10170 mul4r 11144 mulsub 11418 leltadd 11459 ltord1 11501 leord1 11502 eqord1 11503 divmul24 11679 expcan 13887 ltexp2 13888 bhmafibid2 15178 fsum 15432 fprod 15651 isprm5 16412 ramub 16714 setcinv 17805 grpidpropd 18346 gsumpropd2lem 18363 cmnpropd 19396 gsumcom3 19579 unitpropd 19939 lidl1el 20489 1marepvmarrepid 21724 1marepvsma1 21732 ordtrest2 22355 filuni 23036 haustsms2 23288 blcomps 23546 blcom 23547 metnrmlem3 24024 cnmpopc 24091 icoopnst 24102 icccvx 24113 equivcfil 24463 volcn 24770 dvmptfsum 25139 cxple 25850 cxple3 25856 uhgr2edg 27575 lnosub 29121 chirredlem2 30753 metider 31844 ordtrest2NEW 31873 fsum2dsub 32587 finxpreclem2 35561 fin2so 35764 cover2 35872 filbcmb 35898 isdrngo2 36116 crngohomfo 36164 unichnidl 36189 cdleme50eq 38555 dvhvaddcomN 39110 ismrc 40523 prproropf1olem4 44958 |
Copyright terms: Public domain | W3C validator |