| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: an42s 661 sotr2 5580 somin2 6108 f1elima 7238 f1imaeq 7240 soisoi 7303 isosolem 7322 xpexr2 7895 smoword 8335 unxpdomlem3 9199 fiming 9451 fiinfg 9452 sornom 10230 fin1a2s 10367 mul4r 11343 mulsub 11621 leltadd 11662 ltord1 11704 leord1 11705 eqord1 11706 divmul24 11886 expcan 14134 ltexp2 14135 bhmafibid2 15435 fsum 15686 fprod 15907 isprm5 16677 ramub 16984 setcinv 18052 grpidpropd 18589 gsumpropd2lem 18606 cmnpropd 19721 gsumcom3 19908 unitpropd 20326 lidl1el 21136 1marepvmarrepid 22462 1marepvsma1 22470 ordtrest2 23091 filuni 23772 haustsms2 24024 blcomps 24281 blcom 24282 metnrmlem3 24750 cnmpopc 24822 icoopnst 24836 icccvx 24848 equivcfil 25199 volcn 25507 dvmptfsum 25879 cxple 26604 cxple3 26610 om2noseqlt2 28194 om2noseqf1o 28195 uhgr2edg 29135 lnosub 30688 chirredlem2 32320 metider 33884 ordtrest2NEW 33913 fsum2dsub 34598 finxpreclem2 37378 fin2so 37601 cover2 37709 filbcmb 37734 isdrngo2 37952 crngohomfo 38000 unichnidl 38025 cdleme50eq 40535 dvhvaddcomN 41090 ismrc 42689 prproropf1olem4 47507 pgnbgreunbgrlem4 48109 |
| Copyright terms: Public domain | W3C validator |