![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrfilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrfi 29187. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
Ref | Expression |
---|---|
cusgrfilem1 | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrfi.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2724 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | cusgredg 29153 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
4 | fveq2 6882 | . . . . . . . . 9 ⊢ (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) | |
5 | 4 | ad2antlr 724 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) |
6 | hashprg 14353 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) | |
7 | 6 | adantrr 714 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) |
8 | 7 | biimpcd 248 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑁 → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
9 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
10 | 9 | imp 406 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2) |
11 | 5, 10 | eqtrd 2764 | . . . . . . 7 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2) |
12 | 11 | an13s 648 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2) |
13 | 12 | rexlimdvaa 3148 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2)) |
14 | 13 | ss2rabdv 4066 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
15 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
17 | id 22 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
18 | 16, 17 | sseq12d 4008 | . . . 4 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
19 | 14, 18 | imbitrrid 245 | . . 3 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
20 | 3, 19 | syl 17 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
21 | 20 | imp 406 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∃wrex 3062 {crab 3424 ⊆ wss 3941 𝒫 cpw 4595 {cpr 4623 ‘cfv 6534 2c2 12265 ♯chash 14288 Vtxcvtx 28728 Edgcedg 28779 ComplUSGraphccusgr 29139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-dju 9893 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-n0 12471 df-xnn0 12543 df-z 12557 df-uz 12821 df-fz 13483 df-hash 14289 df-edg 28780 df-upgr 28814 df-umgr 28815 df-usgr 28883 df-nbgr 29062 df-uvtx 29115 df-cplgr 29140 df-cusgr 29141 |
This theorem is referenced by: cusgrfi 29187 |
Copyright terms: Public domain | W3C validator |