MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem1 Structured version   Visualization version   GIF version

Theorem cusgrfilem1 29243
Description: Lemma 1 for cusgrfi 29246. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
Assertion
Ref Expression
cusgrfilem1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem1
StepHypRef Expression
1 cusgrfi.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2727 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2cusgredg 29211 . . 3 (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
4 fveq2 6891 . . . . . . . . 9 (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
54ad2antlr 726 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
6 hashprg 14372 . . . . . . . . . . . 12 ((𝑎𝑉𝑁𝑉) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
76adantrr 716 . . . . . . . . . . 11 ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
87biimpcd 248 . . . . . . . . . 10 (𝑎𝑁 → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
98adantr 480 . . . . . . . . 9 ((𝑎𝑁𝑥 = {𝑎, 𝑁}) → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
109imp 406 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2)
115, 10eqtrd 2767 . . . . . . 7 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2)
1211an13s 650 . . . . . 6 (((𝑁𝑉𝑥 ∈ 𝒫 𝑉) ∧ (𝑎𝑉 ∧ (𝑎𝑁𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2)
1312rexlimdvaa 3151 . . . . 5 ((𝑁𝑉𝑥 ∈ 𝒫 𝑉) → (∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2))
1413ss2rabdv 4069 . . . 4 (𝑁𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
15 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1615a1i 11 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})})
17 id 22 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1816, 17sseq12d 4011 . . . 4 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1914, 18imbitrrid 245 . . 3 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
203, 19syl 17 . 2 (𝐺 ∈ ComplUSGraph → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
2120imp 406 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2935  wrex 3065  {crab 3427  wss 3944  𝒫 cpw 4598  {cpr 4626  cfv 6542  2c2 12283  chash 14307  Vtxcvtx 28783  Edgcedg 28834  ComplUSGraphccusgr 29197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9910  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-n0 12489  df-xnn0 12561  df-z 12575  df-uz 12839  df-fz 13503  df-hash 14308  df-edg 28835  df-upgr 28869  df-umgr 28870  df-usgr 28938  df-nbgr 29120  df-uvtx 29173  df-cplgr 29198  df-cusgr 29199
This theorem is referenced by:  cusgrfi  29246
  Copyright terms: Public domain W3C validator