![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrfilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrfi 29311. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
Ref | Expression |
---|---|
cusgrfilem1 | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrfi.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2725 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | cusgredg 29276 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
4 | fveq2 6890 | . . . . . . . . 9 ⊢ (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) | |
5 | 4 | ad2antlr 725 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) |
6 | hashprg 14381 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) | |
7 | 6 | adantrr 715 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) |
8 | 7 | biimpcd 248 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑁 → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
9 | 8 | adantr 479 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
10 | 9 | imp 405 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2) |
11 | 5, 10 | eqtrd 2765 | . . . . . . 7 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2) |
12 | 11 | an13s 649 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2) |
13 | 12 | rexlimdvaa 3146 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2)) |
14 | 13 | ss2rabdv 4066 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
15 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
17 | id 22 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
18 | 16, 17 | sseq12d 4007 | . . . 4 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
19 | 14, 18 | imbitrrid 245 | . . 3 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
20 | 3, 19 | syl 17 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
21 | 20 | imp 405 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∃wrex 3060 {crab 3419 ⊆ wss 3941 𝒫 cpw 4599 {cpr 4627 ‘cfv 6543 2c2 12292 ♯chash 14316 Vtxcvtx 28848 Edgcedg 28899 ComplUSGraphccusgr 29262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-fz 13512 df-hash 14317 df-edg 28900 df-upgr 28934 df-umgr 28935 df-usgr 29003 df-nbgr 29185 df-uvtx 29238 df-cplgr 29263 df-cusgr 29264 |
This theorem is referenced by: cusgrfi 29311 |
Copyright terms: Public domain | W3C validator |