MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem1 Structured version   Visualization version   GIF version

Theorem cusgrfilem1 29427
Description: Lemma 1 for cusgrfi 29430. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
Assertion
Ref Expression
cusgrfilem1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem1
StepHypRef Expression
1 cusgrfi.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2730 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2cusgredg 29395 . . 3 (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
4 fveq2 6817 . . . . . . . . 9 (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
54ad2antlr 727 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
6 hashprg 14294 . . . . . . . . . . . 12 ((𝑎𝑉𝑁𝑉) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
76adantrr 717 . . . . . . . . . . 11 ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
87biimpcd 249 . . . . . . . . . 10 (𝑎𝑁 → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
98adantr 480 . . . . . . . . 9 ((𝑎𝑁𝑥 = {𝑎, 𝑁}) → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
109imp 406 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2)
115, 10eqtrd 2765 . . . . . . 7 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2)
1211an13s 651 . . . . . 6 (((𝑁𝑉𝑥 ∈ 𝒫 𝑉) ∧ (𝑎𝑉 ∧ (𝑎𝑁𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2)
1312rexlimdvaa 3132 . . . . 5 ((𝑁𝑉𝑥 ∈ 𝒫 𝑉) → (∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2))
1413ss2rabdv 4024 . . . 4 (𝑁𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
15 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1615a1i 11 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})})
17 id 22 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1816, 17sseq12d 3966 . . . 4 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1914, 18imbitrrid 246 . . 3 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
203, 19syl 17 . 2 (𝐺 ∈ ComplUSGraph → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
2120imp 406 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054  {crab 3393  wss 3900  𝒫 cpw 4548  {cpr 4576  cfv 6477  2c2 12172  chash 14229  Vtxcvtx 28967  Edgcedg 29018  ComplUSGraphccusgr 29381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-hash 14230  df-edg 29019  df-upgr 29053  df-umgr 29054  df-usgr 29122  df-nbgr 29304  df-uvtx 29357  df-cplgr 29382  df-cusgr 29383
This theorem is referenced by:  cusgrfi  29430
  Copyright terms: Public domain W3C validator