Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrfilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrfi 27400. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
Ref | Expression |
---|---|
cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
Ref | Expression |
---|---|
cusgrfilem1 | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrfi.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | cusgredg 27366 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
4 | fveq2 6674 | . . . . . . . . 9 ⊢ (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) | |
5 | 4 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) |
6 | hashprg 13848 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) | |
7 | 6 | adantrr 717 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) |
8 | 7 | biimpcd 252 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑁 → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
9 | 8 | adantr 484 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
10 | 9 | imp 410 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2) |
11 | 5, 10 | eqtrd 2773 | . . . . . . 7 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2) |
12 | 11 | an13s 651 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2) |
13 | 12 | rexlimdvaa 3195 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2)) |
14 | 13 | ss2rabdv 3965 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
15 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
17 | id 22 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
18 | 16, 17 | sseq12d 3910 | . . . 4 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
19 | 14, 18 | syl5ibr 249 | . . 3 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
20 | 3, 19 | syl 17 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
21 | 20 | imp 410 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∃wrex 3054 {crab 3057 ⊆ wss 3843 𝒫 cpw 4488 {cpr 4518 ‘cfv 6339 2c2 11771 ♯chash 13782 Vtxcvtx 26941 Edgcedg 26992 ComplUSGraphccusgr 27352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-oadd 8135 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-n0 11977 df-xnn0 12049 df-z 12063 df-uz 12325 df-fz 12982 df-hash 13783 df-edg 26993 df-upgr 27027 df-umgr 27028 df-usgr 27096 df-nbgr 27275 df-uvtx 27328 df-cplgr 27353 df-cusgr 27354 |
This theorem is referenced by: cusgrfi 27400 |
Copyright terms: Public domain | W3C validator |