| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrfilem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cusgrfi 29422. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
| Ref | Expression |
|---|---|
| cusgrfilem1 | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrfi.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | cusgredg 29387 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 4 | fveq2 6826 | . . . . . . . . 9 ⊢ (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) | |
| 5 | 4 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) |
| 6 | hashprg 14320 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) | |
| 7 | 6 | adantrr 717 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) |
| 8 | 7 | biimpcd 249 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑁 → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
| 9 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
| 10 | 9 | imp 406 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2) |
| 11 | 5, 10 | eqtrd 2764 | . . . . . . 7 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2) |
| 12 | 11 | an13s 651 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2) |
| 13 | 12 | rexlimdvaa 3131 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2)) |
| 14 | 13 | ss2rabdv 4029 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 15 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
| 17 | id 22 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
| 18 | 16, 17 | sseq12d 3971 | . . . 4 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
| 19 | 14, 18 | imbitrrid 246 | . . 3 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
| 20 | 3, 19 | syl 17 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
| 21 | 20 | imp 406 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 ⊆ wss 3905 𝒫 cpw 4553 {cpr 4581 ‘cfv 6486 2c2 12201 ♯chash 14255 Vtxcvtx 28959 Edgcedg 29010 ComplUSGraphccusgr 29373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-edg 29011 df-upgr 29045 df-umgr 29046 df-usgr 29114 df-nbgr 29296 df-uvtx 29349 df-cplgr 29374 df-cusgr 29375 |
| This theorem is referenced by: cusgrfi 29422 |
| Copyright terms: Public domain | W3C validator |