| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrfilem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for cusgrfi 29438. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrfi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
| Ref | Expression |
|---|---|
| cusgrfilem1 | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrfi.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 3 | 1, 2 | cusgredg 29403 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 4 | fveq2 6876 | . . . . . . . . 9 ⊢ (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) | |
| 5 | 4 | ad2antlr 727 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁})) |
| 6 | hashprg 14413 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) | |
| 7 | 6 | adantrr 717 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (𝑎 ≠ 𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2)) |
| 8 | 7 | biimpcd 249 | . . . . . . . . . 10 ⊢ (𝑎 ≠ 𝑁 → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
| 9 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → ((𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2)) |
| 10 | 9 | imp 406 | . . . . . . . 8 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2) |
| 11 | 5, 10 | eqtrd 2770 | . . . . . . 7 ⊢ (((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) ∧ (𝑎 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2) |
| 12 | 11 | an13s 651 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2) |
| 13 | 12 | rexlimdvaa 3142 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2)) |
| 14 | 13 | ss2rabdv 4051 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| 15 | cusgrfi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
| 17 | id 22 | . . . . 5 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
| 18 | 16, 17 | sseq12d 3992 | . . . 4 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
| 19 | 14, 18 | imbitrrid 246 | . . 3 ⊢ ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
| 20 | 3, 19 | syl 17 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝑁 ∈ 𝑉 → 𝑃 ⊆ (Edg‘𝐺))) |
| 21 | 20 | imp 406 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ (Edg‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 {crab 3415 ⊆ wss 3926 𝒫 cpw 4575 {cpr 4603 ‘cfv 6531 2c2 12295 ♯chash 14348 Vtxcvtx 28975 Edgcedg 29026 ComplUSGraphccusgr 29389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-edg 29027 df-upgr 29061 df-umgr 29062 df-usgr 29130 df-nbgr 29312 df-uvtx 29365 df-cplgr 29390 df-cusgr 29391 |
| This theorem is referenced by: cusgrfi 29438 |
| Copyright terms: Public domain | W3C validator |