MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem1 Structured version   Visualization version   GIF version

Theorem cusgrfilem1 29488
Description: Lemma 1 for cusgrfi 29491. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
Assertion
Ref Expression
cusgrfilem1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem1
StepHypRef Expression
1 cusgrfi.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2735 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2cusgredg 29456 . . 3 (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
4 fveq2 6907 . . . . . . . . 9 (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
54ad2antlr 727 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
6 hashprg 14431 . . . . . . . . . . . 12 ((𝑎𝑉𝑁𝑉) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
76adantrr 717 . . . . . . . . . . 11 ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
87biimpcd 249 . . . . . . . . . 10 (𝑎𝑁 → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
98adantr 480 . . . . . . . . 9 ((𝑎𝑁𝑥 = {𝑎, 𝑁}) → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
109imp 406 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2)
115, 10eqtrd 2775 . . . . . . 7 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2)
1211an13s 651 . . . . . 6 (((𝑁𝑉𝑥 ∈ 𝒫 𝑉) ∧ (𝑎𝑉 ∧ (𝑎𝑁𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2)
1312rexlimdvaa 3154 . . . . 5 ((𝑁𝑉𝑥 ∈ 𝒫 𝑉) → (∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2))
1413ss2rabdv 4086 . . . 4 (𝑁𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
15 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1615a1i 11 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})})
17 id 22 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1816, 17sseq12d 4029 . . . 4 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1914, 18imbitrrid 246 . . 3 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
203, 19syl 17 . 2 (𝐺 ∈ ComplUSGraph → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
2120imp 406 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  wss 3963  𝒫 cpw 4605  {cpr 4633  cfv 6563  2c2 12319  chash 14366  Vtxcvtx 29028  Edgcedg 29079  ComplUSGraphccusgr 29442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365  df-uvtx 29418  df-cplgr 29443  df-cusgr 29444
This theorem is referenced by:  cusgrfi  29491
  Copyright terms: Public domain W3C validator