MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrfilem1 Structured version   Visualization version   GIF version

Theorem cusgrfilem1 27822
Description: Lemma 1 for cusgrfi 27825. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
Assertion
Ref Expression
cusgrfilem1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem1
StepHypRef Expression
1 cusgrfi.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2738 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2cusgredg 27791 . . 3 (𝐺 ∈ ComplUSGraph → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
4 fveq2 6774 . . . . . . . . 9 (𝑥 = {𝑎, 𝑁} → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
54ad2antlr 724 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = (♯‘{𝑎, 𝑁}))
6 hashprg 14110 . . . . . . . . . . . 12 ((𝑎𝑉𝑁𝑉) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
76adantrr 714 . . . . . . . . . . 11 ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (𝑎𝑁 ↔ (♯‘{𝑎, 𝑁}) = 2))
87biimpcd 248 . . . . . . . . . 10 (𝑎𝑁 → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
98adantr 481 . . . . . . . . 9 ((𝑎𝑁𝑥 = {𝑎, 𝑁}) → ((𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉)) → (♯‘{𝑎, 𝑁}) = 2))
109imp 407 . . . . . . . 8 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘{𝑎, 𝑁}) = 2)
115, 10eqtrd 2778 . . . . . . 7 (((𝑎𝑁𝑥 = {𝑎, 𝑁}) ∧ (𝑎𝑉 ∧ (𝑁𝑉𝑥 ∈ 𝒫 𝑉))) → (♯‘𝑥) = 2)
1211an13s 648 . . . . . 6 (((𝑁𝑉𝑥 ∈ 𝒫 𝑉) ∧ (𝑎𝑉 ∧ (𝑎𝑁𝑥 = {𝑎, 𝑁}))) → (♯‘𝑥) = 2)
1312rexlimdvaa 3214 . . . . 5 ((𝑁𝑉𝑥 ∈ 𝒫 𝑉) → (∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁}) → (♯‘𝑥) = 2))
1413ss2rabdv 4009 . . . 4 (𝑁𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
15 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1615a1i 11 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})})
17 id 22 . . . . 5 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
1816, 17sseq12d 3954 . . . 4 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑃 ⊆ (Edg‘𝐺) ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1914, 18syl5ibr 245 . . 3 ((Edg‘𝐺) = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
203, 19syl 17 . 2 (𝐺 ∈ ComplUSGraph → (𝑁𝑉𝑃 ⊆ (Edg‘𝐺)))
2120imp 407 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑃 ⊆ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  wss 3887  𝒫 cpw 4533  {cpr 4563  cfv 6433  2c2 12028  chash 14044  Vtxcvtx 27366  Edgcedg 27417  ComplUSGraphccusgr 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-umgr 27453  df-usgr 27521  df-nbgr 27700  df-uvtx 27753  df-cplgr 27778  df-cusgr 27779
This theorem is referenced by:  cusgrfi  27825
  Copyright terms: Public domain W3C validator