Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp32 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp31.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp31.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 411 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imp42 427 impr 455 anasss 467 an13s 648 3expb 1119 reuss2 4255 reupick 4258 po2nr 5517 tz7.7 6290 ordtr2 6308 fvmptt 6890 fliftfund 7178 isomin 7202 f1ocnv2d 7514 onint 7632 tz7.48lem 8261 oalimcl 8374 oaass 8375 omass 8394 omabs 8462 finsschain 9102 frmin 9505 frminOLD 9506 infxpenlem 9768 axcc3 10193 zorn2lem7 10257 addclpi 10647 addnidpi 10656 genpnnp 10760 genpnmax 10762 mulclprlem 10774 dedekindle 11137 prodgt0 11820 ltsubrp 12763 ltaddrp 12764 pfxccat3 14443 sumeven 16092 sumodd 16093 lcmfunsnlem2lem1 16339 divgcdcoprm0 16366 infpnlem1 16607 prmgaplem4 16751 iscatd 17378 imasmnd2 18418 imasgrp2 18686 cyccom 18818 imasring 19854 mplcoe5lem 21236 dmatmul 21642 scmatmulcl 21663 scmatsgrp1 21667 smatvscl 21669 cpmatacl 21861 cpmatmcllem 21863 0ntr 22218 clsndisj 22222 innei 22272 islpi 22296 tgcnp 22400 haust1 22499 alexsublem 23191 alexsubb 23193 isxmetd 23475 bddiblnc 25002 2lgslem1a1 26533 axcontlem4 27331 ewlkle 27968 clwwlkf 28405 clwwlknonwwlknonb 28464 uhgr3cyclexlem 28539 numclwwlk1lem2foa 28712 grpoidinvlem3 28862 elspansn5 29930 5oalem6 30015 mdi 30651 dmdi 30658 dmdsl3 30671 atom1d 30709 cvexchlem 30724 atcvatlem 30741 chirredlem3 30748 mdsymlem5 30763 f1o3d 30956 bnj570 32879 dfon2lem6 33758 soseq 33797 nodense 33889 broutsideof2 34418 outsideoftr 34425 outsideofeq 34426 elicc3 34500 nn0prpwlem 34505 nndivsub 34640 fvineqsneu 35576 fvineqsneq 35577 ftc1anc 35852 cntotbnd 35948 heiborlem6 35968 pridlc3 36225 erim2 36783 leat2 37302 cvrexchlem 37427 cvratlem 37429 3dim2 37476 ps-2 37486 lncvrelatN 37789 osumcllem11N 37974 2reuimp0 44572 iccpartgt 44846 odz2prm2pw 44982 bgoldbachlt 45232 tgblthelfgott 45234 tgoldbach 45236 isomgrsym 45255 isomgrtr 45258 funcrngcsetcALT 45524 |
Copyright terms: Public domain | W3C validator |