![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp32 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp31.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp31.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 410 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: imp42 426 impr 454 anasss 466 an13s 650 3expb 1120 reuss2 4345 reupick 4348 po2nr 5622 tz7.7 6421 ordtr2 6439 fvmptt 7049 fliftfund 7349 isomin 7373 f1ocnv2d 7703 onint 7826 soseq 8200 tz7.48lem 8497 oalimcl 8616 oaass 8617 omass 8636 omabs 8707 finsschain 9429 frmin 9818 infxpenlem 10082 axcc3 10507 zorn2lem7 10571 addclpi 10961 addnidpi 10970 genpnnp 11074 genpnmax 11076 mulclprlem 11088 dedekindle 11454 prodgt0 12141 ltsubrp 13093 ltaddrp 13094 pfxccat3 14782 sumeven 16435 sumodd 16436 lcmfunsnlem2lem1 16685 divgcdcoprm0 16712 infpnlem1 16957 prmgaplem4 17101 iscatd 17731 imasmnd2 18809 imasgrp2 19095 cyccom 19243 imasrng 20204 imasring 20353 funcrngcsetcALT 20663 mplcoe5lem 22080 dmatmul 22524 scmatmulcl 22545 scmatsgrp1 22549 smatvscl 22551 cpmatacl 22743 cpmatmcllem 22745 0ntr 23100 clsndisj 23104 innei 23154 islpi 23178 tgcnp 23282 haust1 23381 alexsublem 24073 alexsubb 24075 isxmetd 24357 bddiblnc 25897 2lgslem1a1 27451 nodense 27755 precsexlem11 28259 axcontlem4 29000 ewlkle 29641 clwwlkf 30079 clwwlknonwwlknonb 30138 uhgr3cyclexlem 30213 numclwwlk1lem2foa 30386 grpoidinvlem3 30538 elspansn5 31606 5oalem6 31691 mdi 32327 dmdi 32334 dmdsl3 32347 atom1d 32385 cvexchlem 32400 atcvatlem 32417 chirredlem3 32424 mdsymlem5 32439 f1o3d 32646 bnj570 34881 dfon2lem6 35752 broutsideof2 36086 outsideoftr 36093 outsideofeq 36094 elicc3 36283 nn0prpwlem 36288 nndivsub 36423 fvineqsneu 37377 fvineqsneq 37378 ftc1anc 37661 cntotbnd 37756 heiborlem6 37776 pridlc3 38033 erimeq2 38634 leat2 39250 cvrexchlem 39376 cvratlem 39378 3dim2 39425 ps-2 39435 lncvrelatN 39738 osumcllem11N 39923 2reuimp0 47029 iccpartgt 47301 odz2prm2pw 47437 bgoldbachlt 47687 tgblthelfgott 47689 tgoldbach 47691 grimco 47764 uspgrlimlem2 47813 |
Copyright terms: Public domain | W3C validator |