Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp32 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp31.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp31.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 411 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 407 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: imp42 427 impr 455 anasss 467 an13s 648 3expb 1119 reuss2 4250 reupick 4253 po2nr 5518 tz7.7 6296 ordtr2 6314 fvmptt 6904 fliftfund 7193 isomin 7217 f1ocnv2d 7531 onint 7649 tz7.48lem 8281 oalimcl 8400 oaass 8401 omass 8420 omabs 8490 finsschain 9135 frmin 9516 infxpenlem 9778 axcc3 10203 zorn2lem7 10267 addclpi 10657 addnidpi 10666 genpnnp 10770 genpnmax 10772 mulclprlem 10784 dedekindle 11148 prodgt0 11831 ltsubrp 12775 ltaddrp 12776 pfxccat3 14456 sumeven 16105 sumodd 16106 lcmfunsnlem2lem1 16352 divgcdcoprm0 16379 infpnlem1 16620 prmgaplem4 16764 iscatd 17391 imasmnd2 18431 imasgrp2 18699 cyccom 18831 imasring 19867 mplcoe5lem 21249 dmatmul 21655 scmatmulcl 21676 scmatsgrp1 21680 smatvscl 21682 cpmatacl 21874 cpmatmcllem 21876 0ntr 22231 clsndisj 22235 innei 22285 islpi 22309 tgcnp 22413 haust1 22512 alexsublem 23204 alexsubb 23206 isxmetd 23488 bddiblnc 25015 2lgslem1a1 26546 axcontlem4 27344 ewlkle 27981 clwwlkf 28420 clwwlknonwwlknonb 28479 uhgr3cyclexlem 28554 numclwwlk1lem2foa 28727 grpoidinvlem3 28877 elspansn5 29945 5oalem6 30030 mdi 30666 dmdi 30673 dmdsl3 30686 atom1d 30724 cvexchlem 30739 atcvatlem 30756 chirredlem3 30763 mdsymlem5 30778 f1o3d 30971 bnj570 32894 dfon2lem6 33773 soseq 33812 nodense 33904 broutsideof2 34433 outsideoftr 34440 outsideofeq 34441 elicc3 34515 nn0prpwlem 34520 nndivsub 34655 fvineqsneu 35591 fvineqsneq 35592 ftc1anc 35867 cntotbnd 35963 heiborlem6 35983 pridlc3 36240 erim2 36796 leat2 37315 cvrexchlem 37440 cvratlem 37442 3dim2 37489 ps-2 37499 lncvrelatN 37802 osumcllem11N 37987 2reuimp0 44617 iccpartgt 44890 odz2prm2pw 45026 bgoldbachlt 45276 tgblthelfgott 45278 tgoldbach 45280 isomgrsym 45299 isomgrtr 45302 funcrngcsetcALT 45568 |
Copyright terms: Public domain | W3C validator |