Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imp32 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp31.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp32 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp31.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | impd 410 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
3 | 2 | imp 406 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: imp42 426 impr 454 anasss 466 an13s 647 3expb 1118 reuss2 4246 reupick 4249 po2nr 5508 tz7.7 6277 ordtr2 6295 fvmptt 6877 fliftfund 7164 isomin 7188 f1ocnv2d 7500 onint 7617 tz7.48lem 8242 oalimcl 8353 oaass 8354 omass 8373 omabs 8441 finsschain 9056 frmin 9438 infxpenlem 9700 axcc3 10125 zorn2lem7 10189 addclpi 10579 addnidpi 10588 genpnnp 10692 genpnmax 10694 mulclprlem 10706 dedekindle 11069 prodgt0 11752 ltsubrp 12695 ltaddrp 12696 pfxccat3 14375 sumeven 16024 sumodd 16025 lcmfunsnlem2lem1 16271 divgcdcoprm0 16298 infpnlem1 16539 prmgaplem4 16683 iscatd 17299 imasmnd2 18337 imasgrp2 18605 cyccom 18737 imasring 19773 mplcoe5lem 21150 dmatmul 21554 scmatmulcl 21575 scmatsgrp1 21579 smatvscl 21581 cpmatacl 21773 cpmatmcllem 21775 0ntr 22130 clsndisj 22134 innei 22184 islpi 22208 tgcnp 22312 haust1 22411 alexsublem 23103 alexsubb 23105 isxmetd 23387 bddiblnc 24911 2lgslem1a1 26442 axcontlem4 27238 ewlkle 27875 clwwlkf 28312 clwwlknonwwlknonb 28371 uhgr3cyclexlem 28446 numclwwlk1lem2foa 28619 grpoidinvlem3 28769 elspansn5 29837 5oalem6 29922 mdi 30558 dmdi 30565 dmdsl3 30578 atom1d 30616 cvexchlem 30631 atcvatlem 30648 chirredlem3 30655 mdsymlem5 30670 f1o3d 30863 bnj570 32785 dfon2lem6 33670 soseq 33730 nodense 33822 broutsideof2 34351 outsideoftr 34358 outsideofeq 34359 elicc3 34433 nn0prpwlem 34438 nndivsub 34573 fvineqsneu 35509 fvineqsneq 35510 ftc1anc 35785 cntotbnd 35881 heiborlem6 35901 pridlc3 36158 erim2 36716 leat2 37235 cvrexchlem 37360 cvratlem 37362 3dim2 37409 ps-2 37419 lncvrelatN 37722 osumcllem11N 37907 2reuimp0 44493 iccpartgt 44767 odz2prm2pw 44903 bgoldbachlt 45153 tgblthelfgott 45155 tgoldbach 45157 isomgrsym 45176 isomgrtr 45179 funcrngcsetcALT 45445 |
Copyright terms: Public domain | W3C validator |