| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ancomstVD | Structured version Visualization version GIF version | ||
Description: Closed form of ancoms 458. The following user's proof is completed by
invoking mmj2's unify command and using mmj2's StepSelector to pick all
remaining steps of the Metamath proof.
|
| Ref | Expression |
|---|---|
| ancomstVD | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | imbi1 347 | . 2 ⊢ (((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) → (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒))) | |
| 3 | 1, 2 | e0a 44770 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |