Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancomst | Structured version Visualization version GIF version |
Description: Closed form of ancoms 458. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
ancomst | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | imbi1i 349 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sbcom2 2163 ralcom 3280 ralcomf 3282 ovolgelb 24549 itg2leub 24804 nmoubi 29035 wl-sbcom2d 35643 ifpidg 40996 undmrnresiss 41101 ntrneiiso 41590 expcomdg 42009 |
Copyright terms: Public domain | W3C validator |