| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomst | Structured version Visualization version GIF version | ||
| Description: Closed form of ancoms 458. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| ancomst | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | imbi1i 349 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbcom2 2173 ralcom 3289 ralcomf 3302 ovolgelb 25515 itg2leub 25769 nmoubi 30791 wl-sbcom2d 37562 ifpidg 43504 undmrnresiss 43617 ntrneiiso 44104 expcomdg 44520 |
| Copyright terms: Public domain | W3C validator |