![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancomst | Structured version Visualization version GIF version |
Description: Closed form of ancoms 460. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
ancomst | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 462 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | imbi1i 350 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: sbcom2 2162 ralcom 3287 ralcomf 3300 ovolgelb 24997 itg2leub 25252 nmoubi 30025 wl-sbcom2d 36426 ifpidg 42242 undmrnresiss 42355 ntrneiiso 42842 expcomdg 43261 |
Copyright terms: Public domain | W3C validator |