Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2VD Structured version   Visualization version   GIF version

Theorem ssralv2VD 44336
Description: Quantification restricted to a subclass for two quantifiers. ssralv 4050 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 44001 is ssralv2VD 44336 without virtual deductions and was automatically derived from ssralv2VD 44336.
1:: (   (𝐴𝐵𝐶𝐷)   ▶   (𝐴𝐵 𝐶𝐷)   )
2:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐵𝑦𝐷𝜑   )
3:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐴𝐵   )
4:3,2: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐷𝜑   )
5:4: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐷𝜑)   )
6:5: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐷𝜑)   )
7:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑥𝐴   )
8:7,6: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐷𝜑   )
9:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐶𝐷   )
10:9,8: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐶𝜑   )
11:10: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐶𝜑)   )
12:: ((𝐴𝐵𝐶𝐷) → ∀𝑥(𝐴𝐵𝐶𝐷))
13:: (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝑥𝐵𝑦𝐷𝜑)
14:12,13,11: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐶𝜑)   )
15:14: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐶𝜑   )
16:15: (   (𝐴𝐵𝐶𝐷)    ▶   (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑)   )
qed:16: ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑))
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2VD ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝐷   𝑦,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ssralv2VD
StepHypRef Expression
1 ax-5 1905 . . . . 5 ((𝐴𝐵𝐶𝐷) → ∀𝑥(𝐴𝐵𝐶𝐷))
2 hbra1 3296 . . . . 5 (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝑥𝐵𝑦𝐷 𝜑)
3 idn1 44044 . . . . . . . 8 (   (𝐴𝐵𝐶𝐷)   ▶   (𝐴𝐵𝐶𝐷)   )
4 simpr 483 . . . . . . . 8 ((𝐴𝐵𝐶𝐷) → 𝐶𝐷)
53, 4e1a 44097 . . . . . . 7 (   (𝐴𝐵𝐶𝐷)   ▶   𝐶𝐷   )
6 idn3 44085 . . . . . . . 8 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ,   𝑥𝐴   ▶   𝑥𝐴   )
7 simpl 481 . . . . . . . . . . . 12 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
83, 7e1a 44097 . . . . . . . . . . 11 (   (𝐴𝐵𝐶𝐷)   ▶   𝐴𝐵   )
9 idn2 44083 . . . . . . . . . . 11 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐵𝑦𝐷 𝜑   )
10 ssralv 4050 . . . . . . . . . . 11 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
118, 9, 10e12 44194 . . . . . . . . . 10 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐴𝑦𝐷 𝜑   )
12 df-ral 3059 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐷 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
1312biimpi 215 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐷 𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
1411, 13e2 44101 . . . . . . . . 9 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑)   )
15 sp 2171 . . . . . . . . 9 (∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑) → (𝑥𝐴 → ∀𝑦𝐷 𝜑))
1614, 15e2 44101 . . . . . . . 8 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐷 𝜑)   )
17 pm2.27 42 . . . . . . . 8 (𝑥𝐴 → ((𝑥𝐴 → ∀𝑦𝐷 𝜑) → ∀𝑦𝐷 𝜑))
186, 16, 17e32 44228 . . . . . . 7 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ,   𝑥𝐴   ▶   𝑦𝐷 𝜑   )
19 ssralv 4050 . . . . . . 7 (𝐶𝐷 → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
205, 18, 19e13 44218 . . . . . 6 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ,   𝑥𝐴   ▶   𝑦𝐶 𝜑   )
2120in3 44079 . . . . 5 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐶 𝜑)   )
221, 2, 21gen21nv 44090 . . . 4 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐶 𝜑)   )
23 df-ral 3059 . . . . 5 (∀𝑥𝐴𝑦𝐶 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐶 𝜑))
2423biimpri 227 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦𝐶 𝜑) → ∀𝑥𝐴𝑦𝐶 𝜑)
2522, 24e2 44101 . . 3 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐴𝑦𝐶 𝜑   )
2625in2 44075 . 2 (   (𝐴𝐵𝐶𝐷)   ▶   (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑)   )
2726in1 44041 1 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531  wcel 2098  wral 3058  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-v 3475  df-in 3956  df-ss 3966  df-vd1 44040  df-vd2 44048  df-vd3 44060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator