Proof of Theorem ssralv2VD
Step | Hyp | Ref
| Expression |
1 | | ax-5 1916 |
. . . . 5
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ∀𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) |
2 | | hbra1 3145 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑) |
3 | | idn1 42147 |
. . . . . . . 8
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ) |
4 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → 𝐶 ⊆ 𝐷) |
5 | 3, 4 | e1a 42200 |
. . . . . . 7
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ 𝐶 ⊆ 𝐷 ) |
6 | | idn3 42188 |
. . . . . . . 8
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) |
7 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → 𝐴 ⊆ 𝐵) |
8 | 3, 7 | e1a 42200 |
. . . . . . . . . . 11
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ 𝐴 ⊆ 𝐵 ) |
9 | | idn2 42186 |
. . . . . . . . . . 11
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ) |
10 | | ssralv 3991 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) |
11 | 8, 9, 10 | e12 42297 |
. . . . . . . . . 10
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑 ) |
12 | | df-ral 3070 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) |
13 | 12 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) |
14 | 11, 13 | e2 42204 |
. . . . . . . . 9
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) ) |
15 | | sp 2179 |
. . . . . . . . 9
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) |
16 | 14, 15 | e2 42204 |
. . . . . . . 8
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) ) |
17 | | pm2.27 42 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → ∀𝑦 ∈ 𝐷 𝜑)) |
18 | 6, 16, 17 | e32 42331 |
. . . . . . 7
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ ∀𝑦 ∈ 𝐷 𝜑 ) |
19 | | ssralv 3991 |
. . . . . . 7
⊢ (𝐶 ⊆ 𝐷 → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) |
20 | 5, 18, 19 | e13 42321 |
. . . . . 6
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ ∀𝑦 ∈ 𝐶 𝜑 ) |
21 | 20 | in3 42182 |
. . . . 5
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑) ) |
22 | 1, 2, 21 | gen21nv 42193 |
. . . 4
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑) ) |
23 | | df-ral 3070 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐶 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑)) |
24 | 23 | biimpri 227 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑) |
25 | 22, 24 | e2 42204 |
. . 3
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) , ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 ▶ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑 ) |
26 | 25 | in2 42178 |
. 2
⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ▶ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑) ) |
27 | 26 | in1 42144 |
1
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |