Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2VD Structured version   Visualization version   GIF version

Theorem ssralv2VD 42439
Description: Quantification restricted to a subclass for two quantifiers. ssralv 3991 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 42104 is ssralv2VD 42439 without virtual deductions and was automatically derived from ssralv2VD 42439.
1:: (   (𝐴𝐵𝐶𝐷)   ▶   (𝐴𝐵 𝐶𝐷)   )
2:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐵𝑦𝐷𝜑   )
3:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐴𝐵   )
4:3,2: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐷𝜑   )
5:4: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐷𝜑)   )
6:5: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐷𝜑)   )
7:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑥𝐴   )
8:7,6: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐷𝜑   )
9:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐶𝐷   )
10:9,8: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐶𝜑   )
11:10: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐶𝜑)   )
12:: ((𝐴𝐵𝐶𝐷) → ∀𝑥(𝐴𝐵𝐶𝐷))
13:: (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝑥𝐵𝑦𝐷𝜑)
14:12,13,11: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐶𝜑)   )
15:14: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐶𝜑   )
16:15: (   (𝐴𝐵𝐶𝐷)    ▶   (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑)   )
qed:16: ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑))
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2VD ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝐷   𝑦,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ssralv2VD
StepHypRef Expression
1 ax-5 1916 . . . . 5 ((𝐴𝐵𝐶𝐷) → ∀𝑥(𝐴𝐵𝐶𝐷))
2 hbra1 3145 . . . . 5 (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝑥𝐵𝑦𝐷 𝜑)
3 idn1 42147 . . . . . . . 8 (   (𝐴𝐵𝐶𝐷)   ▶   (𝐴𝐵𝐶𝐷)   )
4 simpr 484 . . . . . . . 8 ((𝐴𝐵𝐶𝐷) → 𝐶𝐷)
53, 4e1a 42200 . . . . . . 7 (   (𝐴𝐵𝐶𝐷)   ▶   𝐶𝐷   )
6 idn3 42188 . . . . . . . 8 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ,   𝑥𝐴   ▶   𝑥𝐴   )
7 simpl 482 . . . . . . . . . . . 12 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
83, 7e1a 42200 . . . . . . . . . . 11 (   (𝐴𝐵𝐶𝐷)   ▶   𝐴𝐵   )
9 idn2 42186 . . . . . . . . . . 11 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐵𝑦𝐷 𝜑   )
10 ssralv 3991 . . . . . . . . . . 11 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
118, 9, 10e12 42297 . . . . . . . . . 10 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐴𝑦𝐷 𝜑   )
12 df-ral 3070 . . . . . . . . . . 11 (∀𝑥𝐴𝑦𝐷 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
1312biimpi 215 . . . . . . . . . 10 (∀𝑥𝐴𝑦𝐷 𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
1411, 13e2 42204 . . . . . . . . 9 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑)   )
15 sp 2179 . . . . . . . . 9 (∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑) → (𝑥𝐴 → ∀𝑦𝐷 𝜑))
1614, 15e2 42204 . . . . . . . 8 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐷 𝜑)   )
17 pm2.27 42 . . . . . . . 8 (𝑥𝐴 → ((𝑥𝐴 → ∀𝑦𝐷 𝜑) → ∀𝑦𝐷 𝜑))
186, 16, 17e32 42331 . . . . . . 7 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ,   𝑥𝐴   ▶   𝑦𝐷 𝜑   )
19 ssralv 3991 . . . . . . 7 (𝐶𝐷 → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
205, 18, 19e13 42321 . . . . . 6 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ,   𝑥𝐴   ▶   𝑦𝐶 𝜑   )
2120in3 42182 . . . . 5 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐶 𝜑)   )
221, 2, 21gen21nv 42193 . . . 4 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐶 𝜑)   )
23 df-ral 3070 . . . . 5 (∀𝑥𝐴𝑦𝐶 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐶 𝜑))
2423biimpri 227 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦𝐶 𝜑) → ∀𝑥𝐴𝑦𝐶 𝜑)
2522, 24e2 42204 . . 3 (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵𝑦𝐷 𝜑   ▶   𝑥𝐴𝑦𝐶 𝜑   )
2625in2 42178 . 2 (   (𝐴𝐵𝐶𝐷)   ▶   (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑)   )
2726in1 42144 1 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2109  wral 3065  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-v 3432  df-in 3898  df-ss 3908  df-vd1 42143  df-vd2 42151  df-vd3 42163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator