|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imbi1 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.84 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| imbi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi1d 341 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: imbi1i 349 nanbi1 1500 ifpbi1 43495 3impexpVD 44881 ancomstVD 44890 onfrALTVD 44916 hbimpgVD 44929 hbexgVD 44931 ax6e2ndeqVD 44934 ax6e2ndeqALT 44956 | 
| Copyright terms: Public domain | W3C validator |