Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antnestALT Structured version   Visualization version   GIF version

Theorem antnestALT 35688
Description: Alternative proof of antnest 35683 from the valid schema ((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓) using laws of nested antecedents. Our proof uses only the laws antnestlaw1 35685 and antnestlaw3 35687. (Contributed by Adrian Ducourtial, 5-Dec-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
antnestALT ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓)

Proof of Theorem antnestALT
StepHypRef Expression
1 pm2.27 42 . . . 4 (⊤ → ((⊤ → 𝜑) → 𝜑))
2 pm2.27 42 . . . 4 (((⊤ → 𝜑) → 𝜑) → ((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓))
31, 2syl 17 . . 3 (⊤ → ((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓))
43mptru 1547 . 2 ((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓)
5 antnestlaw3 35687 . . . 4 (((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓) ↔ ((((⊤ → 𝜑) → 𝜓) → 𝜑) → 𝜑))
6 antnestlaw1 35685 . . . . . 6 (((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜓) ↔ ((⊤ → 𝜑) → 𝜓))
76imbi1i 349 . . . . 5 ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜓) → 𝜑) ↔ (((⊤ → 𝜑) → 𝜓) → 𝜑))
87imbi1i 349 . . . 4 (((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜓) → 𝜑) → 𝜑) ↔ ((((⊤ → 𝜑) → 𝜓) → 𝜑) → 𝜑))
95, 8bitr4i 278 . . 3 (((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓) ↔ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜓) → 𝜑) → 𝜑))
10 antnestlaw3 35687 . . 3 (((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜓) → 𝜑) → 𝜑) ↔ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓))
119, 10bitri 275 . 2 (((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓) ↔ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓))
124, 11mpbi 230 1 ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator