Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antnestlaw2 Structured version   Visualization version   GIF version

Theorem antnestlaw2 35686
Description: A law of nested antecedents. (Contributed by Adrian Ducourtial, 5-Dec-2025.)
Assertion
Ref Expression
antnestlaw2 ((((𝜑𝜓) → 𝜓) → 𝜒) ↔ (((𝜑𝜒) → 𝜓) → 𝜒))

Proof of Theorem antnestlaw2
StepHypRef Expression
1 pm2.27 42 . . . . . 6 (𝜑 → ((𝜑𝜓) → 𝜓))
21a1d 25 . . . . 5 (𝜑 → (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → ((𝜑𝜓) → 𝜓)))
3 pm2.21 123 . . . . . . . 8 𝜑 → (𝜑𝜒))
43a1d 25 . . . . . . 7 𝜑 → (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → (𝜑𝜒)))
5 simplim 167 . . . . . . 7 (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → ((𝜑𝜒) → 𝜓))
64, 5sylcom 30 . . . . . 6 𝜑 → (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → 𝜓))
76a1dd 50 . . . . 5 𝜑 → (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → ((𝜑𝜓) → 𝜓)))
82, 7pm2.61i 182 . . . 4 (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → ((𝜑𝜓) → 𝜓))
9 conax1 170 . . . 4 (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → ¬ 𝜒)
108, 9jcnd 163 . . 3 (¬ (((𝜑𝜒) → 𝜓) → 𝜒) → ¬ (((𝜑𝜓) → 𝜓) → 𝜒))
1110con4i 114 . 2 ((((𝜑𝜓) → 𝜓) → 𝜒) → (((𝜑𝜒) → 𝜓) → 𝜒))
12 conax1 170 . . . 4 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → ¬ 𝜒)
13 con3 153 . . . . . . . 8 ((𝜑𝜒) → (¬ 𝜒 → ¬ 𝜑))
1412, 13syl5com 31 . . . . . . 7 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → ((𝜑𝜒) → ¬ 𝜑))
15 pm2.21 123 . . . . . . 7 𝜑 → (𝜑𝜓))
1614, 15syl6 35 . . . . . 6 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → ((𝜑𝜒) → (𝜑𝜓)))
17 pm2.521g2 175 . . . . . 6 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → ((𝜑𝜒) → ((𝜑𝜓) → 𝜓)))
1816, 17mpdd 43 . . . . 5 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → ((𝜑𝜒) → 𝜓))
19 jcn 162 . . . . . 6 (((𝜑𝜒) → 𝜓) → (¬ 𝜒 → ¬ (((𝜑𝜒) → 𝜓) → 𝜒)))
2019a1i 11 . . . . 5 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → (((𝜑𝜒) → 𝜓) → (¬ 𝜒 → ¬ (((𝜑𝜒) → 𝜓) → 𝜒))))
2118, 20mpd 15 . . . 4 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → (¬ 𝜒 → ¬ (((𝜑𝜒) → 𝜓) → 𝜒)))
2212, 21mpd 15 . . 3 (¬ (((𝜑𝜓) → 𝜓) → 𝜒) → ¬ (((𝜑𝜒) → 𝜓) → 𝜒))
2322con4i 114 . 2 ((((𝜑𝜒) → 𝜓) → 𝜒) → (((𝜑𝜓) → 𝜓) → 𝜒))
2411, 23impbii 209 1 ((((𝜑𝜓) → 𝜓) → 𝜒) ↔ (((𝜑𝜒) → 𝜓) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator