Proof of Theorem antnestlaw2
| Step | Hyp | Ref
| Expression |
| 1 | | pm2.27 42 |
. . . . . 6
⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) |
| 2 | 1 | a1d 25 |
. . . . 5
⊢ (𝜑 → (¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜓))) |
| 3 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬
𝜑 → (𝜑 → 𝜒)) |
| 4 | 3 | a1d 25 |
. . . . . . 7
⊢ (¬
𝜑 → (¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒) → (𝜑 → 𝜒))) |
| 5 | | simplim 167 |
. . . . . . 7
⊢ (¬
(((𝜑 → 𝜒) → 𝜓) → 𝜒) → ((𝜑 → 𝜒) → 𝜓)) |
| 6 | 4, 5 | sylcom 30 |
. . . . . 6
⊢ (¬
𝜑 → (¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒) → 𝜓)) |
| 7 | 6 | a1dd 50 |
. . . . 5
⊢ (¬
𝜑 → (¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜓))) |
| 8 | 2, 7 | pm2.61i 182 |
. . . 4
⊢ (¬
(((𝜑 → 𝜒) → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜓)) |
| 9 | | conax1 170 |
. . . 4
⊢ (¬
(((𝜑 → 𝜒) → 𝜓) → 𝜒) → ¬ 𝜒) |
| 10 | 8, 9 | jcnd 163 |
. . 3
⊢ (¬
(((𝜑 → 𝜒) → 𝜓) → 𝜒) → ¬ (((𝜑 → 𝜓) → 𝜓) → 𝜒)) |
| 11 | 10 | con4i 114 |
. 2
⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜒)) |
| 12 | | conax1 170 |
. . . 4
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → ¬ 𝜒) |
| 13 | | con3 153 |
. . . . . . . 8
⊢ ((𝜑 → 𝜒) → (¬ 𝜒 → ¬ 𝜑)) |
| 14 | 12, 13 | syl5com 31 |
. . . . . . 7
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → ((𝜑 → 𝜒) → ¬ 𝜑)) |
| 15 | | pm2.21 123 |
. . . . . . 7
⊢ (¬
𝜑 → (𝜑 → 𝜓)) |
| 16 | 14, 15 | syl6 35 |
. . . . . 6
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → ((𝜑 → 𝜒) → (𝜑 → 𝜓))) |
| 17 | | pm2.521g2 175 |
. . . . . 6
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → ((𝜑 → 𝜒) → ((𝜑 → 𝜓) → 𝜓))) |
| 18 | 16, 17 | mpdd 43 |
. . . . 5
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → ((𝜑 → 𝜒) → 𝜓)) |
| 19 | | jcn 162 |
. . . . . 6
⊢ (((𝜑 → 𝜒) → 𝜓) → (¬ 𝜒 → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒))) |
| 20 | 19 | a1i 11 |
. . . . 5
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → (¬ 𝜒 → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒)))) |
| 21 | 18, 20 | mpd 15 |
. . . 4
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → (¬ 𝜒 → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒))) |
| 22 | 12, 21 | mpd 15 |
. . 3
⊢ (¬
(((𝜑 → 𝜓) → 𝜓) → 𝜒) → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜒)) |
| 23 | 22 | con4i 114 |
. 2
⊢ ((((𝜑 → 𝜒) → 𝜓) → 𝜒) → (((𝜑 → 𝜓) → 𝜓) → 𝜒)) |
| 24 | 11, 23 | impbii 209 |
1
⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜒) ↔ (((𝜑 → 𝜒) → 𝜓) → 𝜒)) |