| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-c10 | Structured version Visualization version GIF version | ||
| Description: A variant of ax6 2389.
Axiom scheme C10' in [Megill] p. 448 (p. 16 of
the
preprint).
This axiom is obsolete and should no longer be used. It is proved above as Theorem axc10 2390. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-c10 | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . . 5 setvar 𝑥 | |
| 2 | vy | . . . . 5 setvar 𝑦 | |
| 3 | 1, 2 | weq 1962 | . . . 4 wff 𝑥 = 𝑦 |
| 4 | wph | . . . . 5 wff 𝜑 | |
| 5 | 4, 1 | wal 1538 | . . . 4 wff ∀𝑥𝜑 |
| 6 | 3, 5 | wi 4 | . . 3 wff (𝑥 = 𝑦 → ∀𝑥𝜑) |
| 7 | 6, 1 | wal 1538 | . 2 wff ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) |
| 8 | 7, 4 | wi 4 | 1 wff (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: ax6fromc10 38897 equid1 38900 equid1ALT 38926 |
| Copyright terms: Public domain | W3C validator |