| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > equid1 | Structured version Visualization version GIF version | ||
| Description: Proof of equid 2010 from our older axioms. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms (although the proof, as you can see below, is not as obvious as you might think). This proof uses only axioms without distinct variable conditions and requires no dummy variables. A simpler proof, similar to Tarski's, is possible if we make use of ax-5 1909; see the proof of equid 2010. See equid1ALT 38927 for an alternate proof. (Contributed by NM, 10-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equid1 | ⊢ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c4 38886 | . . . 4 ⊢ (∀𝑥(∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) → (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))) | |
| 2 | ax-c5 38885 | . . . . 5 ⊢ (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑥) | |
| 3 | ax-c9 38892 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑥 → (¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))) | |
| 4 | 2, 2, 3 | sylc 65 | . . . 4 ⊢ (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) |
| 5 | 1, 4 | mpg 1796 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) |
| 6 | ax-c10 38888 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) → 𝑥 = 𝑥) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → 𝑥 = 𝑥) |
| 8 | ax-c7 38887 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → 𝑥 = 𝑥) | |
| 9 | 7, 8 | pm2.61i 182 | 1 ⊢ 𝑥 = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-c5 38885 ax-c4 38886 ax-c7 38887 ax-c10 38888 ax-c9 38892 |
| This theorem is referenced by: equcomi1 38902 |
| Copyright terms: Public domain | W3C validator |