Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equid1 Structured version   Visualization version   GIF version

Theorem equid1 38881
Description: Proof of equid 2009 from our older axioms. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms (although the proof, as you can see below, is not as obvious as you might think). This proof uses only axioms without distinct variable conditions and requires no dummy variables. A simpler proof, similar to Tarski's, is possible if we make use of ax-5 1908; see the proof of equid 2009. See equid1ALT 38907 for an alternate proof. (Contributed by NM, 10-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equid1 𝑥 = 𝑥

Proof of Theorem equid1
StepHypRef Expression
1 ax-c4 38866 . . . 4 (∀𝑥(∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) → (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)))
2 ax-c5 38865 . . . . 5 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ¬ ∀𝑥 𝑥 = 𝑥)
3 ax-c9 38872 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑥 → (¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)))
42, 2, 3sylc 65 . . . 4 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
51, 4mpg 1794 . . 3 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
6 ax-c10 38868 . . 3 (∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) → 𝑥 = 𝑥)
75, 6syl 17 . 2 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥𝑥 = 𝑥)
8 ax-c7 38867 . 2 (¬ ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥𝑥 = 𝑥)
97, 8pm2.61i 182 1 𝑥 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-c5 38865  ax-c4 38866  ax-c7 38867  ax-c10 38868  ax-c9 38872
This theorem is referenced by:  equcomi1  38882
  Copyright terms: Public domain W3C validator