MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6 Structured version   Visualization version   GIF version

Theorem ax6 2384
Description: Theorem showing that ax-6 1972 follows from the weaker version ax6v 1973. (Even though this theorem depends on ax-6 1972, all references of ax-6 1972 are made via ax6v 1973. An earlier version stated ax6v 1973 as a separate axiom, but having two axioms caused some confusion.)

This theorem should be referenced in place of ax-6 1972 so that all proofs can be traced back to ax6v 1973. When possible, use the weaker ax6v 1973 rather than ax6 2384 since the ax6v 1973 derivation is much shorter and requires fewer axioms. (Contributed by NM, 12-Nov-2013.) (Revised by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 4-Feb-2018.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use ax6v 1973 instead. (New usage is discouraged.)

Assertion
Ref Expression
ax6 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax6
StepHypRef Expression
1 ax6e 2383 . 2 𝑥 𝑥 = 𝑦
2 df-ex 1784 . 2 (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦)
31, 2mpbi 229 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axc10  2385
  Copyright terms: Public domain W3C validator