MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6 Structured version   Visualization version   GIF version

Theorem ax6 2386
Description: Theorem showing that ax-6 1964 follows from the weaker version ax6v 1965. (Even though this theorem depends on ax-6 1964, all references of ax-6 1964 are made via ax6v 1965. An earlier version stated ax6v 1965 as a separate axiom, but having two axioms caused some confusion.)

This theorem should be referenced in place of ax-6 1964 so that all proofs can be traced back to ax6v 1965. When possible, use the weaker ax6v 1965 rather than ax6 2386 since the ax6v 1965 derivation is much shorter and requires fewer axioms. (Contributed by NM, 12-Nov-2013.) (Revised by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 4-Feb-2018.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use ax6v 1965 instead. (New usage is discouraged.)

Assertion
Ref Expression
ax6 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax6
StepHypRef Expression
1 ax6e 2385 . 2 𝑥 𝑥 = 𝑦
2 df-ex 1776 . 2 (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦)
31, 2mpbi 230 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1534  wex 1775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-12 2174  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776
This theorem is referenced by:  axc10  2387
  Copyright terms: Public domain W3C validator