MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax6 Structured version   Visualization version   GIF version

Theorem ax6 2383
Description: Theorem showing that ax-6 1971 follows from the weaker version ax6v 1972. (Even though this theorem depends on ax-6 1971, all references of ax-6 1971 are made via ax6v 1972. An earlier version stated ax6v 1972 as a separate axiom, but having two axioms caused some confusion.)

This theorem should be referenced in place of ax-6 1971 so that all proofs can be traced back to ax6v 1972. When possible, use the weaker ax6v 1972 rather than ax6 2383 since the ax6v 1972 derivation is much shorter and requires fewer axioms. (Contributed by NM, 12-Nov-2013.) (Revised by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 4-Feb-2018.) Usage of this theorem is discouraged because it depends on ax-13 2371. Use ax6v 1972 instead. (New usage is discouraged.)

Assertion
Ref Expression
ax6 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax6
StepHypRef Expression
1 ax6e 2382 . 2 𝑥 𝑥 = 𝑦
2 df-ex 1782 . 2 (∃𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ¬ 𝑥 = 𝑦)
31, 2mpbi 229 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2371
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782
This theorem is referenced by:  axc10  2384
  Copyright terms: Public domain W3C validator