Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax6fromc10 Structured version   Visualization version   GIF version

Theorem ax6fromc10 36837
Description: Rederivation of Axiom ax-6 1972 from ax-c7 36826, ax-c10 36827, ax-gen 1799 and propositional calculus. See axc10 2385 for the derivation of ax-c10 36827 from ax-6 1972. Lemma L18 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 14-May-1993.) (Proof modification is discouraged.) Use ax-6 1972 instead. (New usage is discouraged.)
Assertion
Ref Expression
ax6fromc10 ¬ ∀𝑥 ¬ 𝑥 = 𝑦

Proof of Theorem ax6fromc10
StepHypRef Expression
1 ax-c10 36827 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 ¬ 𝑥 = 𝑦) → ¬ ∀𝑥 ¬ 𝑥 = 𝑦)
2 ax-c7 36826 . . 3 (¬ ∀𝑥 ¬ ∀𝑥 ¬ 𝑥 = 𝑦 → ¬ 𝑥 = 𝑦)
32con4i 114 . 2 (𝑥 = 𝑦 → ∀𝑥 ¬ ∀𝑥 ¬ 𝑥 = 𝑦)
41, 3mpg 1801 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-3 8  ax-gen 1799  ax-c7 36826  ax-c10 36827
This theorem is referenced by:  equidqe  36863
  Copyright terms: Public domain W3C validator