Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equid1ALT Structured version   Visualization version   GIF version

Theorem equid1ALT 38907
Description: Alternate proof of equid 2009 and equid1 38881 from older axioms ax-c7 38867, ax-c10 38868 and ax-c9 38872. (Contributed by NM, 10-Jan-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equid1ALT 𝑥 = 𝑥

Proof of Theorem equid1ALT
StepHypRef Expression
1 ax-c9 38872 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑥 → (¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)))
21pm2.43i 52 . . . 4 (¬ ∀𝑥 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
32alimi 1808 . . 3 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥 → ∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
4 ax-c10 38868 . . 3 (∀𝑥(𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) → 𝑥 = 𝑥)
53, 4syl 17 . 2 (∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥𝑥 = 𝑥)
6 ax-c7 38867 . 2 (¬ ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑥𝑥 = 𝑥)
75, 6pm2.61i 182 1 𝑥 = 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-c7 38867  ax-c10 38868  ax-c9 38872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator