MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc10 Structured version   Visualization version   GIF version

Theorem axc10 2390
Description: Show that the original axiom ax-c10 38887 can be derived from ax6 2389 and axc7 2317 (on top of propositional calculus, ax-gen 1795, and ax-4 1809). See ax6fromc10 38897 for the rederivation of ax6 2389 from ax-c10 38887.

Normally, axc10 2390 should be used rather than ax-c10 38887, except by theorems specifically studying the latter's properties. See bj-axc10v 36794 for a weaker version requiring fewer axioms. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) Usage of this theorem is discouraged because it depends on ax-13 2377. (New usage is discouraged.)

Assertion
Ref Expression
axc10 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem axc10
StepHypRef Expression
1 ax6 2389 . . 3 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
2 con3 153 . . . 4 ((𝑥 = 𝑦 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝑥 = 𝑦))
32al2imi 1815 . . 3 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦))
41, 3mtoi 199 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ¬ ∀𝑥 ¬ ∀𝑥𝜑)
5 axc7 2317 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
64, 5syl 17 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  spALT  44214
  Copyright terms: Public domain W3C validator