Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc10 | Structured version Visualization version GIF version |
Description: Show that the original
axiom ax-c10 36827 can be derived from ax6 2384
and axc7 2315
(on top of propositional calculus, ax-gen 1799, and ax-4 1813). See
ax6fromc10 36837 for the rederivation of ax6 2384
from ax-c10 36827.
Normally, axc10 2385 should be used rather than ax-c10 36827, except by theorems specifically studying the latter's properties. See bj-axc10v 34902 for a weaker version requiring fewer axioms. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) Usage of this theorem is discouraged because it depends on ax-13 2372. (New usage is discouraged.) |
Ref | Expression |
---|---|
axc10 | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6 2384 | . . 3 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | |
2 | con3 153 | . . . 4 ⊢ ((𝑥 = 𝑦 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝑥 = 𝑦)) | |
3 | 2 | al2imi 1819 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝑥 = 𝑦)) |
4 | 1, 3 | mtoi 198 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
5 | axc7 2315 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | |
6 | 4, 5 | syl 17 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: spALT 41701 |
Copyright terms: Public domain | W3C validator |