Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-c9 Structured version   Visualization version   GIF version

Axiom ax-c9 36831
Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms of predicate calculus with equality. Informally, it says that whenever 𝑧 is distinct from 𝑥 and 𝑦, and 𝑥 = 𝑦 is true, then 𝑥 = 𝑦 quantified with 𝑧 is also true. In other words, 𝑧 is irrelevant to the truth of 𝑥 = 𝑦. Axiom scheme C9' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases.

This axiom is obsolete and should no longer be used. It is proved above as Theorem axc9 2382. (Contributed by NM, 10-Jan-1993.) (New usage is discouraged.)

Assertion
Ref Expression
ax-c9 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Detailed syntax breakdown of Axiom ax-c9
StepHypRef Expression
1 vz . . . . 5 setvar 𝑧
2 vx . . . . 5 setvar 𝑥
31, 2weq 1967 . . . 4 wff 𝑧 = 𝑥
43, 1wal 1537 . . 3 wff 𝑧 𝑧 = 𝑥
54wn 3 . 2 wff ¬ ∀𝑧 𝑧 = 𝑥
6 vy . . . . . 6 setvar 𝑦
71, 6weq 1967 . . . . 5 wff 𝑧 = 𝑦
87, 1wal 1537 . . . 4 wff 𝑧 𝑧 = 𝑦
98wn 3 . . 3 wff ¬ ∀𝑧 𝑧 = 𝑦
102, 6weq 1967 . . . 4 wff 𝑥 = 𝑦
1110, 1wal 1537 . . . 4 wff 𝑧 𝑥 = 𝑦
1210, 11wi 4 . . 3 wff (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
139, 12wi 4 . 2 wff (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
145, 13wi 4 1 wff (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
Colors of variables: wff setvar class
This axiom is referenced by:  equid1  36840  hbae-o  36844  ax13fromc9  36847  hbequid  36850  equid1ALT  36866  dvelimf-o  36870  ax5eq  36873
  Copyright terms: Public domain W3C validator