Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbae-o Structured version   Visualization version   GIF version

Theorem hbae-o 36917
Description: All variables are effectively bound in an identical variable specifier. Version of hbae 2431 using ax-c11 36901. (Contributed by NM, 13-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbae-o (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)

Proof of Theorem hbae-o
StepHypRef Expression
1 ax-c5 36897 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 ax-c9 36904 . . . . 5 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
31, 2syl7 74 . . . 4 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
4 ax-c11 36901 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
54aecoms-o 36916 . . . 4 (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
6 ax-c11 36901 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
76pm2.43i 52 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
8 ax-c11 36901 . . . . . 6 (∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
97, 8syl5 34 . . . . 5 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
109aecoms-o 36916 . . . 4 (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
113, 5, 10pm2.61ii 183 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
1211axc4i-o 36912 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑧 𝑥 = 𝑦)
13 ax-11 2154 . 2 (∀𝑥𝑧 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
1412, 13syl 17 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-11 2154  ax-c5 36897  ax-c4 36898  ax-c7 36899  ax-c10 36900  ax-c11 36901  ax-c9 36904
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  dral1-o  36918  hbnae-o  36942  dral2-o  36944  aev-o  36945
  Copyright terms: Public domain W3C validator