Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbae-o | Structured version Visualization version GIF version |
Description: All variables are effectively bound in an identical variable specifier. Version of hbae 2431 using ax-c11 36828. (Contributed by NM, 13-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbae-o | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c5 36824 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
2 | ax-c9 36831 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
3 | 1, 2 | syl7 74 | . . . 4 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
4 | ax-c11 36828 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
5 | 4 | aecoms-o 36843 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
6 | ax-c11 36828 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
7 | 6 | pm2.43i 52 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) |
8 | ax-c11 36828 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
9 | 7, 8 | syl5 34 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
10 | 9 | aecoms-o 36843 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
11 | 3, 5, 10 | pm2.61ii 183 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) |
12 | 11 | axc4i-o 36839 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑧 𝑥 = 𝑦) |
13 | ax-11 2156 | . 2 ⊢ (∀𝑥∀𝑧 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | |
14 | 12, 13 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-c5 36824 ax-c4 36825 ax-c7 36826 ax-c10 36827 ax-c11 36828 ax-c9 36831 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: dral1-o 36845 hbnae-o 36869 dral2-o 36871 aev-o 36872 |
Copyright terms: Public domain | W3C validator |