|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbequid | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (The proof does not use ax-c10 38888.) (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hbequid | ⊢ (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-c9 38892 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥))) | |
| 2 | ax7 2014 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 3 | 2 | pm2.43i 52 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) | 
| 4 | 3 | alimi 1810 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑥) | 
| 5 | 4 | a1d 25 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)) | 
| 6 | 1, 5, 5 | pm2.61ii 183 | 1 ⊢ (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-c9 38892 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: nfequid-o 38912 equidq 38926 | 
| Copyright terms: Public domain | W3C validator |