 Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbequid Structured version   Visualization version   GIF version

Theorem hbequid 35065
 Description: Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (The proof does not use ax-c10 35042.) (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 23-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbequid (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)

Proof of Theorem hbequid
StepHypRef Expression
1 ax-c9 35046 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)))
2 ax7 2063 . . . . 5 (𝑦 = 𝑥 → (𝑦 = 𝑥𝑥 = 𝑥))
32pm2.43i 52 . . . 4 (𝑦 = 𝑥𝑥 = 𝑥)
43alimi 1855 . . 3 (∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
54a1d 25 . 2 (∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥))
61, 5, 5pm2.61ii 178 1 (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1599 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-c9 35046 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824 This theorem is referenced by:  nfequid-o  35066  equidq  35080
 Copyright terms: Public domain W3C validator