Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc9 | Structured version Visualization version GIF version |
Description: Derive set.mm's original ax-c9 36527 from the shorter ax-13 2372. Usage is discouraged to avoid uninformed ax-13 2372 propagation. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) (Proof shortened by Wolf Lammen, 29-Apr-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc9 | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqf 2381 | . . 3 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) | |
2 | 1 | nf5rd 2198 | . 2 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
3 | 2 | ex 416 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-12 2179 ax-13 2372 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 |
This theorem is referenced by: ax13ALT 2425 hbae 2431 axi12 2708 axextbdist 33348 bj-ax6elem1 34485 axc11n11r 34503 bj-hbaeb2 34632 wl-aleq 35317 ax12eq 36578 ax12indalem 36582 |
Copyright terms: Public domain | W3C validator |