MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc9 Structured version   Visualization version   GIF version

Theorem axc9 2381
Description: Derive set.mm's original ax-c9 37755 from the shorter ax-13 2371. Usage is discouraged to avoid uninformed ax-13 2371 propagation. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) (Proof shortened by Wolf Lammen, 29-Apr-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axc9 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))

Proof of Theorem axc9
StepHypRef Expression
1 nfeqf 2380 . . 3 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦)
21nf5rd 2189 . 2 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
32ex 413 1 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2371
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786
This theorem is referenced by:  ax13ALT  2424  hbae  2430  axi12  2701  axextbdist  34767  bj-ax6elem1  35538  axc11n11r  35556  bj-hbaeb2  35691  wl-aleq  36399  ax12eq  37806  ax12indalem  37810
  Copyright terms: Public domain W3C validator