| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc9 | Structured version Visualization version GIF version | ||
| Description: Derive set.mm's original ax-c9 38891 from the shorter ax-13 2377. Usage is discouraged to avoid uninformed ax-13 2377 propagation. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) (Proof shortened by Wolf Lammen, 29-Apr-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc9 | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeqf 2386 | . . 3 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) | |
| 2 | 1 | nf5rd 2196 | . 2 ⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 3 | 2 | ex 412 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: ax13ALT 2430 hbae 2436 axi12 2706 axextbdist 35801 bj-ax6elem1 36667 axc11n11r 36684 bj-hbaeb2 36819 wl-aleq 37536 ax12eq 38942 ax12indalem 38946 |
| Copyright terms: Public domain | W3C validator |