Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege73 Structured version   Visualization version   GIF version

Theorem frege73 43940
Description: Lemma for frege87 43954. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege73.x 𝑋𝑈
frege73.y 𝑌𝑉
Assertion
Ref Expression
frege73 ((𝑅 hereditary 𝐴𝑋𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴)))

Proof of Theorem frege73
StepHypRef Expression
1 frege73.x . . 3 𝑋𝑈
2 frege73.y . . 3 𝑌𝑉
31, 2frege72 43939 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
4 ax-frege2 43795 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))) → ((𝑅 hereditary 𝐴𝑋𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
53, 4ax-mp 5 1 ((𝑅 hereditary 𝐴𝑋𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5149   hereditary whe 43776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-frege1 43794  ax-frege2 43795  ax-frege8 43813  ax-frege52a 43861  ax-frege58b 43905
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-xp 5696  df-cnv 5698  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-he 43777
This theorem is referenced by:  frege87  43954
  Copyright terms: Public domain W3C validator