| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege73 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege87 44053. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege73.x | ⊢ 𝑋 ∈ 𝑈 |
| frege73.y | ⊢ 𝑌 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege73 | ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege73.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege73.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
| 3 | 1, 2 | frege72 44038 | . 2 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| 4 | ax-frege2 43894 | . 2 ⊢ ((𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) → ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5089 hereditary whe 43875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-frege1 43893 ax-frege2 43894 ax-frege8 43912 ax-frege52a 43960 ax-frege58b 44004 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-he 43876 |
| This theorem is referenced by: frege87 44053 |
| Copyright terms: Public domain | W3C validator |