| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege73 | Structured version Visualization version GIF version | ||
| Description: Lemma for frege87 43911. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege73.x | ⊢ 𝑋 ∈ 𝑈 |
| frege73.y | ⊢ 𝑌 ∈ 𝑉 |
| Ref | Expression |
|---|---|
| frege73 | ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege73.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege73.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
| 3 | 1, 2 | frege72 43896 | . 2 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| 4 | ax-frege2 43752 | . 2 ⊢ ((𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) → ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5115 hereditary whe 43733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-frege1 43751 ax-frege2 43752 ax-frege8 43770 ax-frege52a 43818 ax-frege58b 43862 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-he 43734 |
| This theorem is referenced by: frege87 43911 |
| Copyright terms: Public domain | W3C validator |