Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege73 Structured version   Visualization version   GIF version

Theorem frege73 43897
Description: Lemma for frege87 43911. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege73.x 𝑋𝑈
frege73.y 𝑌𝑉
Assertion
Ref Expression
frege73 ((𝑅 hereditary 𝐴𝑋𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴)))

Proof of Theorem frege73
StepHypRef Expression
1 frege73.x . . 3 𝑋𝑈
2 frege73.y . . 3 𝑌𝑉
31, 2frege72 43896 . 2 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
4 ax-frege2 43752 . 2 ((𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))) → ((𝑅 hereditary 𝐴𝑋𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
53, 4ax-mp 5 1 ((𝑅 hereditary 𝐴𝑋𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5115   hereditary whe 43733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-frege1 43751  ax-frege2 43752  ax-frege8 43770  ax-frege52a 43818  ax-frege58b 43862
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-he 43734
This theorem is referenced by:  frege87  43911
  Copyright terms: Public domain W3C validator