Detailed syntax breakdown of Axiom ax-hgt749
Step | Hyp | Ref
| Expression |
1 | | c1 10803 |
. . . . . 6
class
1 |
2 | | cc0 10802 |
. . . . . 6
class
0 |
3 | 1, 2 | cdc 12366 |
. . . . 5
class ;10 |
4 | | c2 11958 |
. . . . . 6
class
2 |
5 | | c7 11963 |
. . . . . 6
class
7 |
6 | 4, 5 | cdc 12366 |
. . . . 5
class ;27 |
7 | | cexp 13710 |
. . . . 5
class
↑ |
8 | 3, 6, 7 | co 7255 |
. . . 4
class (;10↑;27) |
9 | | vn |
. . . . 5
setvar 𝑛 |
10 | 9 | cv 1538 |
. . . 4
class 𝑛 |
11 | | cle 10941 |
. . . 4
class
≤ |
12 | 8, 10, 11 | wbr 5070 |
. . 3
wff (;10↑;27) ≤ 𝑛 |
13 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
14 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑚 |
15 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
16 | 15 | cv 1538 |
. . . . . . . . 9
class 𝑘 |
17 | 14, 16 | cfv 6418 |
. . . . . . . 8
class (𝑘‘𝑚) |
18 | | c9 11965 |
. . . . . . . . . . . 12
class
9 |
19 | | c5 11961 |
. . . . . . . . . . . . . 14
class
5 |
20 | 19, 19 | cdp2 31047 |
. . . . . . . . . . . . 13
class _55 |
21 | 18, 20 | cdp2 31047 |
. . . . . . . . . . . 12
class _9_55 |
22 | 18, 21 | cdp2 31047 |
. . . . . . . . . . 11
class _9_9_55 |
23 | 5, 22 | cdp2 31047 |
. . . . . . . . . 10
class _7_9_9_55 |
24 | 2, 23 | cdp2 31047 |
. . . . . . . . 9
class _0_7_9_9_55 |
25 | | cdp 31064 |
. . . . . . . . 9
class
. |
26 | 1, 24, 25 | co 7255 |
. . . . . . . 8
class (1._0_7_9_9_55) |
27 | 17, 26, 11 | wbr 5070 |
. . . . . . 7
wff (𝑘‘𝑚) ≤ (1._0_7_9_9_55) |
28 | | cn 11903 |
. . . . . . 7
class
ℕ |
29 | 27, 13, 28 | wral 3063 |
. . . . . 6
wff
∀𝑚 ∈
ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) |
30 | | vh |
. . . . . . . . . 10
setvar ℎ |
31 | 30 | cv 1538 |
. . . . . . . . 9
class ℎ |
32 | 14, 31 | cfv 6418 |
. . . . . . . 8
class (ℎ‘𝑚) |
33 | | c4 11960 |
. . . . . . . . . 10
class
4 |
34 | 1, 33 | cdp2 31047 |
. . . . . . . . . 10
class _14 |
35 | 33, 34 | cdp2 31047 |
. . . . . . . . 9
class _4_14 |
36 | 1, 35, 25 | co 7255 |
. . . . . . . 8
class (1._4_14) |
37 | 32, 36, 11 | wbr 5070 |
. . . . . . 7
wff (ℎ‘𝑚) ≤ (1._4_14) |
38 | 37, 13, 28 | wral 3063 |
. . . . . 6
wff
∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14) |
39 | | c8 11964 |
. . . . . . . . . . . . . . . 16
class
8 |
40 | 33, 39 | cdp2 31047 |
. . . . . . . . . . . . . . 15
class _48 |
41 | 4, 40 | cdp2 31047 |
. . . . . . . . . . . . . 14
class _2_48 |
42 | 4, 41 | cdp2 31047 |
. . . . . . . . . . . . 13
class _2_2_48 |
43 | 33, 42 | cdp2 31047 |
. . . . . . . . . . . 12
class _4_2_2_48 |
44 | 2, 43 | cdp2 31047 |
. . . . . . . . . . 11
class _0_4_2_2_48 |
45 | 2, 44 | cdp2 31047 |
. . . . . . . . . 10
class _0_0_4_2_2_48 |
46 | 2, 45 | cdp2 31047 |
. . . . . . . . 9
class _0_0_0_4_2_2_48 |
47 | 2, 46, 25 | co 7255 |
. . . . . . . 8
class (0._0_0_0_4_2_2_48) |
48 | 10, 4, 7 | co 7255 |
. . . . . . . 8
class (𝑛↑2) |
49 | | cmul 10807 |
. . . . . . . 8
class
· |
50 | 47, 48, 49 | co 7255 |
. . . . . . 7
class ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) |
51 | | vx |
. . . . . . . 8
setvar 𝑥 |
52 | | cioo 13008 |
. . . . . . . . 9
class
(,) |
53 | 2, 1, 52 | co 7255 |
. . . . . . . 8
class
(0(,)1) |
54 | 51 | cv 1538 |
. . . . . . . . . . 11
class 𝑥 |
55 | | cvma 26146 |
. . . . . . . . . . . . 13
class
Λ |
56 | 49 | cof 7509 |
. . . . . . . . . . . . 13
class
∘f · |
57 | 55, 31, 56 | co 7255 |
. . . . . . . . . . . 12
class (Λ
∘f · ℎ) |
58 | | cvts 32515 |
. . . . . . . . . . . 12
class
vts |
59 | 57, 10, 58 | co 7255 |
. . . . . . . . . . 11
class
((Λ ∘f · ℎ)vts𝑛) |
60 | 54, 59 | cfv 6418 |
. . . . . . . . . 10
class
(((Λ ∘f · ℎ)vts𝑛)‘𝑥) |
61 | 55, 16, 56 | co 7255 |
. . . . . . . . . . . . 13
class (Λ
∘f · 𝑘) |
62 | 61, 10, 58 | co 7255 |
. . . . . . . . . . . 12
class
((Λ ∘f · 𝑘)vts𝑛) |
63 | 54, 62 | cfv 6418 |
. . . . . . . . . . 11
class
(((Λ ∘f · 𝑘)vts𝑛)‘𝑥) |
64 | 63, 4, 7 | co 7255 |
. . . . . . . . . 10
class
((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2) |
65 | 60, 64, 49 | co 7255 |
. . . . . . . . 9
class
((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) |
66 | | ci 10804 |
. . . . . . . . . . . 12
class
i |
67 | | cpi 15704 |
. . . . . . . . . . . . 13
class
π |
68 | 4, 67, 49 | co 7255 |
. . . . . . . . . . . 12
class (2
· π) |
69 | 66, 68, 49 | co 7255 |
. . . . . . . . . . 11
class (i
· (2 · π)) |
70 | 10 | cneg 11136 |
. . . . . . . . . . . 12
class -𝑛 |
71 | 70, 54, 49 | co 7255 |
. . . . . . . . . . 11
class (-𝑛 · 𝑥) |
72 | 69, 71, 49 | co 7255 |
. . . . . . . . . 10
class ((i
· (2 · π)) · (-𝑛 · 𝑥)) |
73 | | ce 15699 |
. . . . . . . . . 10
class
exp |
74 | 72, 73 | cfv 6418 |
. . . . . . . . 9
class
(exp‘((i · (2 · π)) · (-𝑛 · 𝑥))) |
75 | 65, 74, 49 | co 7255 |
. . . . . . . 8
class
(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) |
76 | 51, 53, 75 | citg 24687 |
. . . . . . 7
class
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥 |
77 | 50, 76, 11 | wbr 5070 |
. . . . . 6
wff ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥 |
78 | 29, 38, 77 | w3a 1085 |
. . . . 5
wff
(∀𝑚 ∈
ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥) |
79 | | cpnf 10937 |
. . . . . . 7
class
+∞ |
80 | | cico 13010 |
. . . . . . 7
class
[,) |
81 | 2, 79, 80 | co 7255 |
. . . . . 6
class
(0[,)+∞) |
82 | | cmap 8573 |
. . . . . 6
class
↑m |
83 | 81, 28, 82 | co 7255 |
. . . . 5
class
((0[,)+∞) ↑m ℕ) |
84 | 78, 15, 83 | wrex 3064 |
. . . 4
wff
∃𝑘 ∈
((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥) |
85 | 84, 30, 83 | wrex 3064 |
. . 3
wff
∃ℎ ∈
((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m
ℕ)(∀𝑚 ∈
ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥) |
86 | 12, 85 | wi 4 |
. 2
wff ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m
ℕ)∃𝑘 ∈
((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) |
87 | | vz |
. . . . . 6
setvar 𝑧 |
88 | 87 | cv 1538 |
. . . . 5
class 𝑧 |
89 | | cdvds 15891 |
. . . . 5
class
∥ |
90 | 4, 88, 89 | wbr 5070 |
. . . 4
wff 2 ∥
𝑧 |
91 | 90 | wn 3 |
. . 3
wff ¬ 2
∥ 𝑧 |
92 | | cz 12249 |
. . 3
class
ℤ |
93 | 91, 87, 92 | crab 3067 |
. 2
class {𝑧 ∈ ℤ ∣ ¬ 2
∥ 𝑧} |
94 | 86, 9, 93 | wral 3063 |
1
wff
∀𝑛 ∈
{𝑧 ∈ ℤ ∣
¬ 2 ∥ 𝑧} ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m
ℕ)∃𝑘 ∈
((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) |