Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt749d Structured version   Visualization version   GIF version

Theorem hgt749d 34643
Description: A deduction version of ax-hgt749 34638. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
hgt749d.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt749d.n (𝜑𝑁𝑂)
hgt749d.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
hgt749d (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Distinct variable groups:   ,𝑁,𝑘,𝑥   ,𝑚,𝑧,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑧,,𝑘,𝑚)   𝑁(𝑧,𝑚)   𝑂(𝑥,𝑧,,𝑘,𝑚)

Proof of Theorem hgt749d
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 hgt749d.1 . 2 (𝜑 → (10↑27) ≤ 𝑁)
2 breq2 5152 . . . 4 (𝑛 = 𝑁 → ((10↑27) ≤ 𝑛 ↔ (10↑27) ≤ 𝑁))
3 oveq1 7438 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛↑2) = (𝑁↑2))
43oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑁 → ((0.00042248) · (𝑛↑2)) = ((0.00042248) · (𝑁↑2)))
5 oveq2 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((Λ ∘f · )vts𝑛) = ((Λ ∘f · )vts𝑁))
65fveq1d 6909 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((Λ ∘f · )vts𝑛)‘𝑥) = (((Λ ∘f · )vts𝑁)‘𝑥))
7 oveq2 7439 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((Λ ∘f · 𝑘)vts𝑛) = ((Λ ∘f · 𝑘)vts𝑁))
87fveq1d 6909 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (((Λ ∘f · 𝑘)vts𝑛)‘𝑥) = (((Λ ∘f · 𝑘)vts𝑁)‘𝑥))
98oveq1d 7446 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2) = ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2))
106, 9oveq12d 7449 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) = ((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)))
11 negeq 11498 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → -𝑛 = -𝑁)
1211oveq1d 7446 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (-𝑛 · 𝑥) = (-𝑁 · 𝑥))
1312oveq2d 7447 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((i · (2 · π)) · (-𝑛 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑥)))
1413fveq2d 6911 . . . . . . . . . . 11 (𝑛 = 𝑁 → (exp‘((i · (2 · π)) · (-𝑛 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))
1510, 14oveq12d 7449 . . . . . . . . . 10 (𝑛 = 𝑁 → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1615adantr 480 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 ∈ (0(,)1)) → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1716itgeq2dv 25832 . . . . . . . 8 (𝑛 = 𝑁 → ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
184, 17breq12d 5161 . . . . . . 7 (𝑛 = 𝑁 → (((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 ↔ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
19183anbi3d 1441 . . . . . 6 (𝑛 = 𝑁 → ((∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2019rexbidv 3177 . . . . 5 (𝑛 = 𝑁 → (∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2120rexbidv 3177 . . . 4 (𝑛 = 𝑁 → (∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
222, 21imbi12d 344 . . 3 (𝑛 = 𝑁 → (((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) ↔ ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))))
23 ax-hgt749 34638 . . . 4 𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥))
2423a1i 11 . . 3 (𝜑 → ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)))
25 hgt749d.n . . . 4 (𝜑𝑁𝑂)
26 hgt749d.o . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2725, 26eleqtrdi 2849 . . 3 (𝜑𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
2822, 24, 27rspcdva 3623 . 2 (𝜑 → ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
291, 28mpd 15 1 (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433   class class class wbr 5148  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  0cc0 11153  1c1 11154  ici 11155   · cmul 11158  +∞cpnf 11290  cle 11294  -cneg 11491  cn 12264  2c2 12319  4c4 12321  5c5 12322  7c7 12324  8c8 12325  9c9 12326  cz 12611  cdc 12731  (,)cioo 13384  [,)cico 13386  cexp 14099  expce 16094  πcpi 16099  cdvds 16287  citg 25667  Λcvma 27150  cdp2 32838  .cdp 32855  vtscvts 34629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hgt749 34638
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-sum 15720  df-itg 25672
This theorem is referenced by:  tgoldbachgtd  34656
  Copyright terms: Public domain W3C validator