Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt749d Structured version   Visualization version   GIF version

Theorem hgt749d 31927
Description: A deduction version of ax-hgt749 31922. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
hgt749d.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt749d.n (𝜑𝑁𝑂)
hgt749d.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
hgt749d (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Distinct variable groups:   ,𝑁,𝑘,𝑥   ,𝑚,𝑧,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑧,,𝑘,𝑚)   𝑁(𝑧,𝑚)   𝑂(𝑥,𝑧,,𝑘,𝑚)

Proof of Theorem hgt749d
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 hgt749d.1 . 2 (𝜑 → (10↑27) ≤ 𝑁)
2 breq2 5056 . . . 4 (𝑛 = 𝑁 → ((10↑27) ≤ 𝑛 ↔ (10↑27) ≤ 𝑁))
3 oveq1 7149 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛↑2) = (𝑁↑2))
43oveq2d 7158 . . . . . . . 8 (𝑛 = 𝑁 → ((0.00042248) · (𝑛↑2)) = ((0.00042248) · (𝑁↑2)))
5 oveq2 7150 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((Λ ∘f · )vts𝑛) = ((Λ ∘f · )vts𝑁))
65fveq1d 6658 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((Λ ∘f · )vts𝑛)‘𝑥) = (((Λ ∘f · )vts𝑁)‘𝑥))
7 oveq2 7150 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((Λ ∘f · 𝑘)vts𝑛) = ((Λ ∘f · 𝑘)vts𝑁))
87fveq1d 6658 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (((Λ ∘f · 𝑘)vts𝑛)‘𝑥) = (((Λ ∘f · 𝑘)vts𝑁)‘𝑥))
98oveq1d 7157 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2) = ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2))
106, 9oveq12d 7160 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) = ((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)))
11 negeq 10864 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → -𝑛 = -𝑁)
1211oveq1d 7157 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (-𝑛 · 𝑥) = (-𝑁 · 𝑥))
1312oveq2d 7158 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((i · (2 · π)) · (-𝑛 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑥)))
1413fveq2d 6660 . . . . . . . . . . 11 (𝑛 = 𝑁 → (exp‘((i · (2 · π)) · (-𝑛 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))
1510, 14oveq12d 7160 . . . . . . . . . 10 (𝑛 = 𝑁 → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1615adantr 483 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 ∈ (0(,)1)) → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1716itgeq2dv 24365 . . . . . . . 8 (𝑛 = 𝑁 → ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
184, 17breq12d 5065 . . . . . . 7 (𝑛 = 𝑁 → (((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 ↔ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
19183anbi3d 1438 . . . . . 6 (𝑛 = 𝑁 → ((∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2019rexbidv 3297 . . . . 5 (𝑛 = 𝑁 → (∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2120rexbidv 3297 . . . 4 (𝑛 = 𝑁 → (∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
222, 21imbi12d 347 . . 3 (𝑛 = 𝑁 → (((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) ↔ ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))))
23 ax-hgt749 31922 . . . 4 𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥))
2423a1i 11 . . 3 (𝜑 → ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)))
25 hgt749d.n . . . 4 (𝜑𝑁𝑂)
26 hgt749d.o . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2725, 26eleqtrdi 2923 . . 3 (𝜑𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
2822, 24, 27rspcdva 3617 . 2 (𝜑 → ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
291, 28mpd 15 1 (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142   class class class wbr 5052  cfv 6341  (class class class)co 7142  f cof 7393  m cmap 8392  0cc0 10523  1c1 10524  ici 10525   · cmul 10528  +∞cpnf 10658  cle 10662  -cneg 10857  cn 11624  2c2 11679  4c4 11681  5c5 11682  7c7 11684  8c8 11685  9c9 11686  cz 11968  cdc 12085  (,)cioo 12725  [,)cico 12727  cexp 13419  expce 15400  πcpi 15405  cdvds 15592  citg 24202  Λcvma 25655  cdp2 30533  .cdp 30550  vtscvts 31913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-hgt749 31922
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-seq 13360  df-sum 15028  df-itg 24207
This theorem is referenced by:  tgoldbachgtd  31940
  Copyright terms: Public domain W3C validator