Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt749d Structured version   Visualization version   GIF version

Theorem hgt749d 34508
Description: A deduction version of ax-hgt749 34503. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
hgt749d.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt749d.n (𝜑𝑁𝑂)
hgt749d.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
hgt749d (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Distinct variable groups:   ,𝑁,𝑘,𝑥   ,𝑚,𝑧,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑧,,𝑘,𝑚)   𝑁(𝑧,𝑚)   𝑂(𝑥,𝑧,,𝑘,𝑚)

Proof of Theorem hgt749d
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 hgt749d.1 . 2 (𝜑 → (10↑27) ≤ 𝑁)
2 breq2 5149 . . . 4 (𝑛 = 𝑁 → ((10↑27) ≤ 𝑛 ↔ (10↑27) ≤ 𝑁))
3 oveq1 7423 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛↑2) = (𝑁↑2))
43oveq2d 7432 . . . . . . . 8 (𝑛 = 𝑁 → ((0.00042248) · (𝑛↑2)) = ((0.00042248) · (𝑁↑2)))
5 oveq2 7424 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((Λ ∘f · )vts𝑛) = ((Λ ∘f · )vts𝑁))
65fveq1d 6895 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((Λ ∘f · )vts𝑛)‘𝑥) = (((Λ ∘f · )vts𝑁)‘𝑥))
7 oveq2 7424 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((Λ ∘f · 𝑘)vts𝑛) = ((Λ ∘f · 𝑘)vts𝑁))
87fveq1d 6895 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (((Λ ∘f · 𝑘)vts𝑛)‘𝑥) = (((Λ ∘f · 𝑘)vts𝑁)‘𝑥))
98oveq1d 7431 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2) = ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2))
106, 9oveq12d 7434 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) = ((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)))
11 negeq 11493 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → -𝑛 = -𝑁)
1211oveq1d 7431 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (-𝑛 · 𝑥) = (-𝑁 · 𝑥))
1312oveq2d 7432 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((i · (2 · π)) · (-𝑛 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑥)))
1413fveq2d 6897 . . . . . . . . . . 11 (𝑛 = 𝑁 → (exp‘((i · (2 · π)) · (-𝑛 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))
1510, 14oveq12d 7434 . . . . . . . . . 10 (𝑛 = 𝑁 → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1615adantr 479 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 ∈ (0(,)1)) → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1716itgeq2dv 25799 . . . . . . . 8 (𝑛 = 𝑁 → ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
184, 17breq12d 5158 . . . . . . 7 (𝑛 = 𝑁 → (((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 ↔ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
19183anbi3d 1439 . . . . . 6 (𝑛 = 𝑁 → ((∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2019rexbidv 3169 . . . . 5 (𝑛 = 𝑁 → (∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2120rexbidv 3169 . . . 4 (𝑛 = 𝑁 → (∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
222, 21imbi12d 343 . . 3 (𝑛 = 𝑁 → (((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) ↔ ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))))
23 ax-hgt749 34503 . . . 4 𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥))
2423a1i 11 . . 3 (𝜑 → ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)))
25 hgt749d.n . . . 4 (𝜑𝑁𝑂)
26 hgt749d.o . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2725, 26eleqtrdi 2836 . . 3 (𝜑𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
2822, 24, 27rspcdva 3608 . 2 (𝜑 → ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
291, 28mpd 15 1 (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3419   class class class wbr 5145  cfv 6546  (class class class)co 7416  f cof 7680  m cmap 8847  0cc0 11149  1c1 11150  ici 11151   · cmul 11154  +∞cpnf 11286  cle 11290  -cneg 11486  cn 12258  2c2 12313  4c4 12315  5c5 12316  7c7 12318  8c8 12319  9c9 12320  cz 12604  cdc 12723  (,)cioo 13372  [,)cico 13374  cexp 14075  expce 16058  πcpi 16063  cdvds 16251  citg 25635  Λcvma 27117  cdp2 32735  .cdp 32752  vtscvts 34494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-hgt749 34503
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-seq 14016  df-sum 15686  df-itg 25640
This theorem is referenced by:  tgoldbachgtd  34521
  Copyright terms: Public domain W3C validator