Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethhgt Structured version   Visualization version   GIF version

Theorem circlemethhgt 34621
Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
circlemethhgt.h (𝜑𝐻:ℕ⟶ℝ)
circlemethhgt.k (𝜑𝐾:ℕ⟶ℝ)
circlemethhgt.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlemethhgt (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝐻,𝑥   𝑛,𝐾,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlemethhgt
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethhgt.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12317 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 s3len 14911 . . . . . 6 (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩) = 3
54eqcomi 2744 . . . . 5 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩)
65a1i 11 . . . 4 (𝜑 → 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩))
7 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8remulcld 11263 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
109recnd 11261 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℂ)
11 vmaf 27079 . . . . . . . 8 Λ:ℕ⟶ℝ
1211a1i 11 . . . . . . 7 (𝜑 → Λ:ℕ⟶ℝ)
13 circlemethhgt.h . . . . . . 7 (𝜑𝐻:ℕ⟶ℝ)
14 nnex 12244 . . . . . . . 8 ℕ ∈ V
1514a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
16 inidm 4202 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
1710, 12, 13, 15, 15, 16off 7687 . . . . . 6 (𝜑 → (Λ ∘f · 𝐻):ℕ⟶ℂ)
18 cnex 11208 . . . . . . 7 ℂ ∈ V
1918, 14elmap 8883 . . . . . 6 ((Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐻):ℕ⟶ℂ)
2017, 19sylibr 234 . . . . 5 (𝜑 → (Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ))
21 circlemethhgt.k . . . . . . 7 (𝜑𝐾:ℕ⟶ℝ)
2210, 12, 21, 15, 15, 16off 7687 . . . . . 6 (𝜑 → (Λ ∘f · 𝐾):ℕ⟶ℂ)
2318, 14elmap 8883 . . . . . 6 ((Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐾):ℕ⟶ℂ)
2422, 23sylibr 234 . . . . 5 (𝜑 → (Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ))
2520, 24, 24s3cld 14889 . . . 4 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩ ∈ Word (ℂ ↑m ℕ))
266, 25wrdfd 14535 . . 3 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
271, 3, 26circlemeth 34618 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
28 fveq2 6875 . . . . . 6 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0))
29 fveq2 6875 . . . . . 6 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
3028, 29fveq12d 6882 . . . . 5 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)))
31 fveq2 6875 . . . . . 6 (𝑎 = 1 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
32 fveq2 6875 . . . . . 6 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3331, 32fveq12d 6882 . . . . 5 (𝑎 = 1 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)))
34 fveq2 6875 . . . . . 6 (𝑎 = 2 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
35 fveq2 6875 . . . . . 6 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
3634, 35fveq12d 6882 . . . . 5 (𝑎 = 2 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))
3726adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
3837ffvelcdmda 7073 . . . . . . 7 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
39 elmapi 8861 . . . . . . 7 ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
4038, 39syl 17 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
41 ssidd 3982 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
421nn0zd 12612 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4342adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
44 3nn0 12517 . . . . . . . . 9 3 ∈ ℕ0
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
46 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
4741, 43, 45, 46reprf 34590 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
4847ffvelcdmda 7073 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
4940, 48ffvelcdmd 7074 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5030, 33, 36, 49prodfzo03 34581 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))))
51 ovex 7436 . . . . . . . 8 (Λ ∘f · 𝐻) ∈ V
52 s3fv0 14908 . . . . . . . 8 ((Λ ∘f · 𝐻) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5351, 52mp1i 13 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5453fveq1d 6877 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ ∘f · 𝐻)‘(𝑛‘0)))
55 simpl 482 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝜑)
56 c0ex 11227 . . . . . . . . . . 11 0 ∈ V
5756tpid1 4744 . . . . . . . . . 10 0 ∈ {0, 1, 2}
58 fzo0to3tp 13766 . . . . . . . . . 10 (0..^3) = {0, 1, 2}
5957, 58eleqtrri 2833 . . . . . . . . 9 0 ∈ (0..^3)
6059a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
6147, 60ffvelcdmd 7074 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
62 ffn 6705 . . . . . . . . . 10 (Λ:ℕ⟶ℝ → Λ Fn ℕ)
6311, 62ax-mp 5 . . . . . . . . 9 Λ Fn ℕ
6463a1i 11 . . . . . . . 8 (𝜑 → Λ Fn ℕ)
6513ffnd 6706 . . . . . . . 8 (𝜑𝐻 Fn ℕ)
66 eqidd 2736 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (Λ‘(𝑛‘0)) = (Λ‘(𝑛‘0)))
67 eqidd 2736 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (𝐻‘(𝑛‘0)) = (𝐻‘(𝑛‘0)))
6864, 65, 15, 15, 16, 66, 67ofval 7680 . . . . . . 7 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
6955, 61, 68syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
7054, 69eqtrd 2770 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
71 ovex 7436 . . . . . . . . 9 (Λ ∘f · 𝐾) ∈ V
72 s3fv1 14909 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7371, 72mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7473fveq1d 6877 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ ∘f · 𝐾)‘(𝑛‘1)))
75 1ex 11229 . . . . . . . . . . . 12 1 ∈ V
7675tpid2 4746 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7776, 58eleqtrri 2833 . . . . . . . . . 10 1 ∈ (0..^3)
7877a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
7947, 78ffvelcdmd 7074 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
8021ffnd 6706 . . . . . . . . 9 (𝜑𝐾 Fn ℕ)
81 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (Λ‘(𝑛‘1)) = (Λ‘(𝑛‘1)))
82 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (𝐾‘(𝑛‘1)) = (𝐾‘(𝑛‘1)))
8364, 80, 15, 15, 16, 81, 82ofval 7680 . . . . . . . 8 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8455, 79, 83syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8574, 84eqtrd 2770 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
86 s3fv2 14910 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8771, 86mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8887fveq1d 6877 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ ∘f · 𝐾)‘(𝑛‘2)))
89 2ex 12315 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4749 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 58eleqtrri 2833 . . . . . . . . . 10 2 ∈ (0..^3)
9291a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
9347, 92ffvelcdmd 7074 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
94 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (Λ‘(𝑛‘2)) = (Λ‘(𝑛‘2)))
95 eqidd 2736 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (𝐾‘(𝑛‘2)) = (𝐾‘(𝑛‘2)))
9664, 80, 15, 15, 16, 94, 95ofval 7680 . . . . . . . 8 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9755, 93, 96syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9888, 97eqtrd 2770 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9985, 98oveq12d 7421 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
10070, 99oveq12d 7421 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
10150, 100eqtrd 2770 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
102101sumeq2dv 15716 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
103 nfv 1914 . . . . . 6 𝑎(𝜑𝑥 ∈ (0(,)1))
104 nfcv 2898 . . . . . 6 𝑎(((Λ ∘f · 𝐻)vts𝑁)‘𝑥)
105 fzofi 13990 . . . . . . 7 (1..^3) ∈ Fin
106105a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ∈ Fin)
10756a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 0 ∈ V)
108 eqid 2735 . . . . . . . . 9 0 = 0
109108orci 865 . . . . . . . 8 (0 = 0 ∨ 0 = 3)
110 0elfz 13639 . . . . . . . . 9 (3 ∈ ℕ0 → 0 ∈ (0...3))
111 elfznelfzob 13787 . . . . . . . . 9 (0 ∈ (0...3) → (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3)))
11244, 110, 111mp2b 10 . . . . . . . 8 (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3))
113109, 112mpbir 231 . . . . . . 7 ¬ 0 ∈ (1..^3)
114113a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ¬ 0 ∈ (1..^3))
1151ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑁 ∈ ℕ0)
116 ioossre 13422 . . . . . . . . . . 11 (0(,)1) ⊆ ℝ
117 ax-resscn 11184 . . . . . . . . . . 11 ℝ ⊆ ℂ
118116, 117sstri 3968 . . . . . . . . . 10 (0(,)1) ⊆ ℂ
119118a1i 11 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℂ)
120119sselda 3958 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
121120adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑥 ∈ ℂ)
12226ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
123 fzo0ss1 13704 . . . . . . . . . . 11 (1..^3) ⊆ (0..^3)
124123a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ⊆ (0..^3))
125124sselda 3958 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑎 ∈ (0..^3))
126122, 125ffvelcdmd 7074 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
127126, 39syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
128115, 121, 127vtscl 34616 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) ∈ ℂ)
12951, 52ax-mp 5 . . . . . . . . 9 (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻)
13028, 129eqtrdi 2786 . . . . . . . 8 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐻))
131130oveq1d 7418 . . . . . . 7 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐻)vts𝑁))
132131fveq1d 6877 . . . . . 6 (𝑎 = 0 → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐻)vts𝑁)‘𝑥))
1331adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
13417adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐻):ℕ⟶ℂ)
135133, 120, 134vtscl 34616 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐻)vts𝑁)‘𝑥) ∈ ℂ)
136103, 104, 106, 107, 114, 128, 132, 135fprodsplitsn 16003 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
137 uncom 4133 . . . . . . . 8 ((1..^3) ∪ {0}) = ({0} ∪ (1..^3))
138 fzo0sn0fzo1 13769 . . . . . . . . 9 (3 ∈ ℕ → (0..^3) = ({0} ∪ (1..^3)))
1392, 138ax-mp 5 . . . . . . . 8 (0..^3) = ({0} ∪ (1..^3))
140137, 139eqtr4i 2761 . . . . . . 7 ((1..^3) ∪ {0}) = (0..^3)
141140a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((1..^3) ∪ {0}) = (0..^3))
142141prodeq1d 15934 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥))
143 fzo13pr 13763 . . . . . . . . . . . . . . 15 (1..^3) = {1, 2}
144143eleq2i 2826 . . . . . . . . . . . . . 14 (𝑎 ∈ (1..^3) ↔ 𝑎 ∈ {1, 2})
145 vex 3463 . . . . . . . . . . . . . . 15 𝑎 ∈ V
146145elpr 4626 . . . . . . . . . . . . . 14 (𝑎 ∈ {1, 2} ↔ (𝑎 = 1 ∨ 𝑎 = 2))
147144, 146bitri 275 . . . . . . . . . . . . 13 (𝑎 ∈ (1..^3) ↔ (𝑎 = 1 ∨ 𝑎 = 2))
14831adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
14971, 72mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
150148, 149eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
15134adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
15271, 86mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
153151, 152eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
154150, 153jaodan 959 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 = 1 ∨ 𝑎 = 2)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
155147, 154sylan2b 594 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
156155adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
157156oveq1d 7418 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐾)vts𝑁))
158157fveq1d 6877 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
159158prodeq2dv 15936 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
16022adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐾):ℕ⟶ℂ)
161133, 120, 160vtscl 34616 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ)
162 fprodconst 15992 . . . . . . . . 9 (((1..^3) ∈ Fin ∧ (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
163106, 161, 162syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
164 nnuz 12893 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1652, 164eleqtri 2832 . . . . . . . . . . . 12 3 ∈ (ℤ‘1)
166 hashfzo 14445 . . . . . . . . . . . 12 (3 ∈ (ℤ‘1) → (♯‘(1..^3)) = (3 − 1))
167165, 166ax-mp 5 . . . . . . . . . . 11 (♯‘(1..^3)) = (3 − 1)
168 3m1e2 12366 . . . . . . . . . . 11 (3 − 1) = 2
169167, 168eqtri 2758 . . . . . . . . . 10 (♯‘(1..^3)) = 2
170169a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(1..^3)) = 2)
171170oveq2d 7419 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
172159, 163, 1713eqtrd 2774 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
173172oveq1d 7418 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
174161sqcld 14160 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) ∈ ℂ)
175135, 174mulcomd 11254 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
176173, 175eqtr4d 2773 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
177136, 142, 1763eqtr3d 2778 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
178177oveq1d 7418 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
179178itgeq2dv 25733 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
18027, 102, 1793eqtr3d 2778 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  {csn 4601  {cpr 4603  {ctp 4605   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  m cmap 8838  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128  ici 11129   · cmul 11132  cmin 11464  -cneg 11465  cn 12238  2c2 12293  3c3 12294  0cn0 12499  cz 12586  cuz 12850  (,)cioo 13360  ...cfz 13522  ..^cfzo 13669  cexp 14077  chash 14346  ⟨“cs3 14859  Σcsu 15700  cprod 15917  expce 16075  πcpi 16080  citg 25569  Λcvma 27052  reprcrepr 34586  vtscvts 34613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-s2 14865  df-s3 14866  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-prod 15918  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-dvds 16271  df-gcd 16512  df-prm 16689  df-pc 16855  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-cmp 23323  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-ovol 25415  df-vol 25416  df-mbf 25570  df-itg1 25571  df-itg2 25572  df-ibl 25573  df-itg 25574  df-0p 25621  df-limc 25817  df-dv 25818  df-log 26515  df-vma 27058  df-repr 34587  df-vts 34614
This theorem is referenced by:  tgoldbachgtde  34638
  Copyright terms: Public domain W3C validator