Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethhgt Structured version   Visualization version   GIF version

Theorem circlemethhgt 32523
Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
circlemethhgt.h (𝜑𝐻:ℕ⟶ℝ)
circlemethhgt.k (𝜑𝐾:ℕ⟶ℝ)
circlemethhgt.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlemethhgt (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝐻,𝑥   𝑛,𝐾,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlemethhgt
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethhgt.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 11982 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 s3len 14535 . . . . . 6 (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩) = 3
54eqcomi 2747 . . . . 5 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩)
65a1i 11 . . . 4 (𝜑 → 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩))
7 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8remulcld 10936 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
109recnd 10934 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℂ)
11 vmaf 26173 . . . . . . . 8 Λ:ℕ⟶ℝ
1211a1i 11 . . . . . . 7 (𝜑 → Λ:ℕ⟶ℝ)
13 circlemethhgt.h . . . . . . 7 (𝜑𝐻:ℕ⟶ℝ)
14 nnex 11909 . . . . . . . 8 ℕ ∈ V
1514a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
16 inidm 4149 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
1710, 12, 13, 15, 15, 16off 7529 . . . . . 6 (𝜑 → (Λ ∘f · 𝐻):ℕ⟶ℂ)
18 cnex 10883 . . . . . . 7 ℂ ∈ V
1918, 14elmap 8617 . . . . . 6 ((Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐻):ℕ⟶ℂ)
2017, 19sylibr 233 . . . . 5 (𝜑 → (Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ))
21 circlemethhgt.k . . . . . . 7 (𝜑𝐾:ℕ⟶ℝ)
2210, 12, 21, 15, 15, 16off 7529 . . . . . 6 (𝜑 → (Λ ∘f · 𝐾):ℕ⟶ℂ)
2318, 14elmap 8617 . . . . . 6 ((Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐾):ℕ⟶ℂ)
2422, 23sylibr 233 . . . . 5 (𝜑 → (Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ))
2520, 24, 24s3cld 14513 . . . 4 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩ ∈ Word (ℂ ↑m ℕ))
266, 25wrdfd 31112 . . 3 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
271, 3, 26circlemeth 32520 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
28 fveq2 6756 . . . . . 6 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0))
29 fveq2 6756 . . . . . 6 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
3028, 29fveq12d 6763 . . . . 5 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)))
31 fveq2 6756 . . . . . 6 (𝑎 = 1 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
32 fveq2 6756 . . . . . 6 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3331, 32fveq12d 6763 . . . . 5 (𝑎 = 1 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)))
34 fveq2 6756 . . . . . 6 (𝑎 = 2 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
35 fveq2 6756 . . . . . 6 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
3634, 35fveq12d 6763 . . . . 5 (𝑎 = 2 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))
3726adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
3837ffvelrnda 6943 . . . . . . 7 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
39 elmapi 8595 . . . . . . 7 ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
4038, 39syl 17 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
41 ssidd 3940 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
421nn0zd 12353 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4342adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
44 3nn0 12181 . . . . . . . . 9 3 ∈ ℕ0
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
46 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
4741, 43, 45, 46reprf 32492 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
4847ffvelrnda 6943 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
4940, 48ffvelrnd 6944 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5030, 33, 36, 49prodfzo03 32483 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))))
51 ovex 7288 . . . . . . . 8 (Λ ∘f · 𝐻) ∈ V
52 s3fv0 14532 . . . . . . . 8 ((Λ ∘f · 𝐻) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5351, 52mp1i 13 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5453fveq1d 6758 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ ∘f · 𝐻)‘(𝑛‘0)))
55 simpl 482 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝜑)
56 c0ex 10900 . . . . . . . . . . 11 0 ∈ V
5756tpid1 4701 . . . . . . . . . 10 0 ∈ {0, 1, 2}
58 fzo0to3tp 13401 . . . . . . . . . 10 (0..^3) = {0, 1, 2}
5957, 58eleqtrri 2838 . . . . . . . . 9 0 ∈ (0..^3)
6059a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
6147, 60ffvelrnd 6944 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
62 ffn 6584 . . . . . . . . . 10 (Λ:ℕ⟶ℝ → Λ Fn ℕ)
6311, 62ax-mp 5 . . . . . . . . 9 Λ Fn ℕ
6463a1i 11 . . . . . . . 8 (𝜑 → Λ Fn ℕ)
6513ffnd 6585 . . . . . . . 8 (𝜑𝐻 Fn ℕ)
66 eqidd 2739 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (Λ‘(𝑛‘0)) = (Λ‘(𝑛‘0)))
67 eqidd 2739 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (𝐻‘(𝑛‘0)) = (𝐻‘(𝑛‘0)))
6864, 65, 15, 15, 16, 66, 67ofval 7522 . . . . . . 7 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
6955, 61, 68syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
7054, 69eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
71 ovex 7288 . . . . . . . . 9 (Λ ∘f · 𝐾) ∈ V
72 s3fv1 14533 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7371, 72mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7473fveq1d 6758 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ ∘f · 𝐾)‘(𝑛‘1)))
75 1ex 10902 . . . . . . . . . . . 12 1 ∈ V
7675tpid2 4703 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7776, 58eleqtrri 2838 . . . . . . . . . 10 1 ∈ (0..^3)
7877a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
7947, 78ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
8021ffnd 6585 . . . . . . . . 9 (𝜑𝐾 Fn ℕ)
81 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (Λ‘(𝑛‘1)) = (Λ‘(𝑛‘1)))
82 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (𝐾‘(𝑛‘1)) = (𝐾‘(𝑛‘1)))
8364, 80, 15, 15, 16, 81, 82ofval 7522 . . . . . . . 8 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8455, 79, 83syl2anc 583 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8574, 84eqtrd 2778 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
86 s3fv2 14534 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8771, 86mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8887fveq1d 6758 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ ∘f · 𝐾)‘(𝑛‘2)))
89 2ex 11980 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4706 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 58eleqtrri 2838 . . . . . . . . . 10 2 ∈ (0..^3)
9291a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
9347, 92ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
94 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (Λ‘(𝑛‘2)) = (Λ‘(𝑛‘2)))
95 eqidd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (𝐾‘(𝑛‘2)) = (𝐾‘(𝑛‘2)))
9664, 80, 15, 15, 16, 94, 95ofval 7522 . . . . . . . 8 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9755, 93, 96syl2anc 583 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9888, 97eqtrd 2778 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9985, 98oveq12d 7273 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
10070, 99oveq12d 7273 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
10150, 100eqtrd 2778 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
102101sumeq2dv 15343 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
103 nfv 1918 . . . . . 6 𝑎(𝜑𝑥 ∈ (0(,)1))
104 nfcv 2906 . . . . . 6 𝑎(((Λ ∘f · 𝐻)vts𝑁)‘𝑥)
105 fzofi 13622 . . . . . . 7 (1..^3) ∈ Fin
106105a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ∈ Fin)
10756a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 0 ∈ V)
108 eqid 2738 . . . . . . . . 9 0 = 0
109108orci 861 . . . . . . . 8 (0 = 0 ∨ 0 = 3)
110 0elfz 13282 . . . . . . . . 9 (3 ∈ ℕ0 → 0 ∈ (0...3))
111 elfznelfzob 13421 . . . . . . . . 9 (0 ∈ (0...3) → (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3)))
11244, 110, 111mp2b 10 . . . . . . . 8 (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3))
113109, 112mpbir 230 . . . . . . 7 ¬ 0 ∈ (1..^3)
114113a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ¬ 0 ∈ (1..^3))
1151ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑁 ∈ ℕ0)
116 ioossre 13069 . . . . . . . . . . 11 (0(,)1) ⊆ ℝ
117 ax-resscn 10859 . . . . . . . . . . 11 ℝ ⊆ ℂ
118116, 117sstri 3926 . . . . . . . . . 10 (0(,)1) ⊆ ℂ
119118a1i 11 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℂ)
120119sselda 3917 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
121120adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑥 ∈ ℂ)
12226ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
123 fzo0ss1 13345 . . . . . . . . . . 11 (1..^3) ⊆ (0..^3)
124123a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ⊆ (0..^3))
125124sselda 3917 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑎 ∈ (0..^3))
126122, 125ffvelrnd 6944 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
127126, 39syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
128115, 121, 127vtscl 32518 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) ∈ ℂ)
12951, 52ax-mp 5 . . . . . . . . 9 (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻)
13028, 129eqtrdi 2795 . . . . . . . 8 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐻))
131130oveq1d 7270 . . . . . . 7 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐻)vts𝑁))
132131fveq1d 6758 . . . . . 6 (𝑎 = 0 → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐻)vts𝑁)‘𝑥))
1331adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
13417adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐻):ℕ⟶ℂ)
135133, 120, 134vtscl 32518 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐻)vts𝑁)‘𝑥) ∈ ℂ)
136103, 104, 106, 107, 114, 128, 132, 135fprodsplitsn 15627 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
137 uncom 4083 . . . . . . . 8 ((1..^3) ∪ {0}) = ({0} ∪ (1..^3))
138 fzo0sn0fzo1 13404 . . . . . . . . 9 (3 ∈ ℕ → (0..^3) = ({0} ∪ (1..^3)))
1392, 138ax-mp 5 . . . . . . . 8 (0..^3) = ({0} ∪ (1..^3))
140137, 139eqtr4i 2769 . . . . . . 7 ((1..^3) ∪ {0}) = (0..^3)
141140a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((1..^3) ∪ {0}) = (0..^3))
142141prodeq1d 15559 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥))
143 fzo13pr 13399 . . . . . . . . . . . . . . 15 (1..^3) = {1, 2}
144143eleq2i 2830 . . . . . . . . . . . . . 14 (𝑎 ∈ (1..^3) ↔ 𝑎 ∈ {1, 2})
145 vex 3426 . . . . . . . . . . . . . . 15 𝑎 ∈ V
146145elpr 4581 . . . . . . . . . . . . . 14 (𝑎 ∈ {1, 2} ↔ (𝑎 = 1 ∨ 𝑎 = 2))
147144, 146bitri 274 . . . . . . . . . . . . 13 (𝑎 ∈ (1..^3) ↔ (𝑎 = 1 ∨ 𝑎 = 2))
14831adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
14971, 72mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
150148, 149eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
15134adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
15271, 86mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
153151, 152eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
154150, 153jaodan 954 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 = 1 ∨ 𝑎 = 2)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
155147, 154sylan2b 593 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
156155adantlr 711 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
157156oveq1d 7270 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐾)vts𝑁))
158157fveq1d 6758 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
159158prodeq2dv 15561 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
16022adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐾):ℕ⟶ℂ)
161133, 120, 160vtscl 32518 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ)
162 fprodconst 15616 . . . . . . . . 9 (((1..^3) ∈ Fin ∧ (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
163106, 161, 162syl2anc 583 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
164 nnuz 12550 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1652, 164eleqtri 2837 . . . . . . . . . . . 12 3 ∈ (ℤ‘1)
166 hashfzo 14072 . . . . . . . . . . . 12 (3 ∈ (ℤ‘1) → (♯‘(1..^3)) = (3 − 1))
167165, 166ax-mp 5 . . . . . . . . . . 11 (♯‘(1..^3)) = (3 − 1)
168 3m1e2 12031 . . . . . . . . . . 11 (3 − 1) = 2
169167, 168eqtri 2766 . . . . . . . . . 10 (♯‘(1..^3)) = 2
170169a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(1..^3)) = 2)
171170oveq2d 7271 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
172159, 163, 1713eqtrd 2782 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
173172oveq1d 7270 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
174161sqcld 13790 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) ∈ ℂ)
175135, 174mulcomd 10927 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
176173, 175eqtr4d 2781 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
177136, 142, 1763eqtr3d 2786 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
178177oveq1d 7270 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
179178itgeq2dv 24851 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
18027, 102, 1793eqtr3d 2786 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  wss 3883  {csn 4558  {cpr 4560  {ctp 4562   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   · cmul 10807  cmin 11135  -cneg 11136  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  ...cfz 13168  ..^cfzo 13311  cexp 13710  chash 13972  ⟨“cs3 14483  Σcsu 15325  cprod 15543  expce 15699  πcpi 15704  citg 24687  Λcvma 26146  reprcrepr 32488  vtscvts 32515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936  df-log 25617  df-vma 26152  df-repr 32489  df-vts 32516
This theorem is referenced by:  tgoldbachgtde  32540
  Copyright terms: Public domain W3C validator