Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethhgt Structured version   Visualization version   GIF version

Theorem circlemethhgt 34641
Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
circlemethhgt.h (𝜑𝐻:ℕ⟶ℝ)
circlemethhgt.k (𝜑𝐾:ℕ⟶ℝ)
circlemethhgt.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlemethhgt (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝐻,𝑥   𝑛,𝐾,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlemethhgt
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethhgt.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12272 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 s3len 14867 . . . . . 6 (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩) = 3
54eqcomi 2739 . . . . 5 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩)
65a1i 11 . . . 4 (𝜑 → 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩))
7 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8remulcld 11211 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
109recnd 11209 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℂ)
11 vmaf 27036 . . . . . . . 8 Λ:ℕ⟶ℝ
1211a1i 11 . . . . . . 7 (𝜑 → Λ:ℕ⟶ℝ)
13 circlemethhgt.h . . . . . . 7 (𝜑𝐻:ℕ⟶ℝ)
14 nnex 12199 . . . . . . . 8 ℕ ∈ V
1514a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
16 inidm 4193 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
1710, 12, 13, 15, 15, 16off 7674 . . . . . 6 (𝜑 → (Λ ∘f · 𝐻):ℕ⟶ℂ)
18 cnex 11156 . . . . . . 7 ℂ ∈ V
1918, 14elmap 8847 . . . . . 6 ((Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐻):ℕ⟶ℂ)
2017, 19sylibr 234 . . . . 5 (𝜑 → (Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ))
21 circlemethhgt.k . . . . . . 7 (𝜑𝐾:ℕ⟶ℝ)
2210, 12, 21, 15, 15, 16off 7674 . . . . . 6 (𝜑 → (Λ ∘f · 𝐾):ℕ⟶ℂ)
2318, 14elmap 8847 . . . . . 6 ((Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐾):ℕ⟶ℂ)
2422, 23sylibr 234 . . . . 5 (𝜑 → (Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ))
2520, 24, 24s3cld 14845 . . . 4 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩ ∈ Word (ℂ ↑m ℕ))
266, 25wrdfd 14491 . . 3 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
271, 3, 26circlemeth 34638 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
28 fveq2 6861 . . . . . 6 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0))
29 fveq2 6861 . . . . . 6 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
3028, 29fveq12d 6868 . . . . 5 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)))
31 fveq2 6861 . . . . . 6 (𝑎 = 1 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
32 fveq2 6861 . . . . . 6 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3331, 32fveq12d 6868 . . . . 5 (𝑎 = 1 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)))
34 fveq2 6861 . . . . . 6 (𝑎 = 2 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
35 fveq2 6861 . . . . . 6 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
3634, 35fveq12d 6868 . . . . 5 (𝑎 = 2 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))
3726adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
3837ffvelcdmda 7059 . . . . . . 7 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
39 elmapi 8825 . . . . . . 7 ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
4038, 39syl 17 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
41 ssidd 3973 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
421nn0zd 12562 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4342adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
44 3nn0 12467 . . . . . . . . 9 3 ∈ ℕ0
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
46 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
4741, 43, 45, 46reprf 34610 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
4847ffvelcdmda 7059 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
4940, 48ffvelcdmd 7060 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5030, 33, 36, 49prodfzo03 34601 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))))
51 ovex 7423 . . . . . . . 8 (Λ ∘f · 𝐻) ∈ V
52 s3fv0 14864 . . . . . . . 8 ((Λ ∘f · 𝐻) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5351, 52mp1i 13 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5453fveq1d 6863 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ ∘f · 𝐻)‘(𝑛‘0)))
55 simpl 482 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝜑)
56 c0ex 11175 . . . . . . . . . . 11 0 ∈ V
5756tpid1 4735 . . . . . . . . . 10 0 ∈ {0, 1, 2}
58 fzo0to3tp 13720 . . . . . . . . . 10 (0..^3) = {0, 1, 2}
5957, 58eleqtrri 2828 . . . . . . . . 9 0 ∈ (0..^3)
6059a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
6147, 60ffvelcdmd 7060 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
62 ffn 6691 . . . . . . . . . 10 (Λ:ℕ⟶ℝ → Λ Fn ℕ)
6311, 62ax-mp 5 . . . . . . . . 9 Λ Fn ℕ
6463a1i 11 . . . . . . . 8 (𝜑 → Λ Fn ℕ)
6513ffnd 6692 . . . . . . . 8 (𝜑𝐻 Fn ℕ)
66 eqidd 2731 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (Λ‘(𝑛‘0)) = (Λ‘(𝑛‘0)))
67 eqidd 2731 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (𝐻‘(𝑛‘0)) = (𝐻‘(𝑛‘0)))
6864, 65, 15, 15, 16, 66, 67ofval 7667 . . . . . . 7 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
6955, 61, 68syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
7054, 69eqtrd 2765 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
71 ovex 7423 . . . . . . . . 9 (Λ ∘f · 𝐾) ∈ V
72 s3fv1 14865 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7371, 72mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7473fveq1d 6863 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ ∘f · 𝐾)‘(𝑛‘1)))
75 1ex 11177 . . . . . . . . . . . 12 1 ∈ V
7675tpid2 4737 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7776, 58eleqtrri 2828 . . . . . . . . . 10 1 ∈ (0..^3)
7877a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
7947, 78ffvelcdmd 7060 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
8021ffnd 6692 . . . . . . . . 9 (𝜑𝐾 Fn ℕ)
81 eqidd 2731 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (Λ‘(𝑛‘1)) = (Λ‘(𝑛‘1)))
82 eqidd 2731 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (𝐾‘(𝑛‘1)) = (𝐾‘(𝑛‘1)))
8364, 80, 15, 15, 16, 81, 82ofval 7667 . . . . . . . 8 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8455, 79, 83syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8574, 84eqtrd 2765 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
86 s3fv2 14866 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8771, 86mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8887fveq1d 6863 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ ∘f · 𝐾)‘(𝑛‘2)))
89 2ex 12270 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4740 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 58eleqtrri 2828 . . . . . . . . . 10 2 ∈ (0..^3)
9291a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
9347, 92ffvelcdmd 7060 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
94 eqidd 2731 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (Λ‘(𝑛‘2)) = (Λ‘(𝑛‘2)))
95 eqidd 2731 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (𝐾‘(𝑛‘2)) = (𝐾‘(𝑛‘2)))
9664, 80, 15, 15, 16, 94, 95ofval 7667 . . . . . . . 8 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9755, 93, 96syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9888, 97eqtrd 2765 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9985, 98oveq12d 7408 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
10070, 99oveq12d 7408 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
10150, 100eqtrd 2765 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
102101sumeq2dv 15675 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
103 nfv 1914 . . . . . 6 𝑎(𝜑𝑥 ∈ (0(,)1))
104 nfcv 2892 . . . . . 6 𝑎(((Λ ∘f · 𝐻)vts𝑁)‘𝑥)
105 fzofi 13946 . . . . . . 7 (1..^3) ∈ Fin
106105a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ∈ Fin)
10756a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 0 ∈ V)
108 eqid 2730 . . . . . . . . 9 0 = 0
109108orci 865 . . . . . . . 8 (0 = 0 ∨ 0 = 3)
110 0elfz 13592 . . . . . . . . 9 (3 ∈ ℕ0 → 0 ∈ (0...3))
111 elfznelfzob 13741 . . . . . . . . 9 (0 ∈ (0...3) → (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3)))
11244, 110, 111mp2b 10 . . . . . . . 8 (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3))
113109, 112mpbir 231 . . . . . . 7 ¬ 0 ∈ (1..^3)
114113a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ¬ 0 ∈ (1..^3))
1151ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑁 ∈ ℕ0)
116 ioossre 13375 . . . . . . . . . . 11 (0(,)1) ⊆ ℝ
117 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
118116, 117sstri 3959 . . . . . . . . . 10 (0(,)1) ⊆ ℂ
119118a1i 11 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℂ)
120119sselda 3949 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
121120adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑥 ∈ ℂ)
12226ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
123 fzo0ss1 13657 . . . . . . . . . . 11 (1..^3) ⊆ (0..^3)
124123a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ⊆ (0..^3))
125124sselda 3949 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑎 ∈ (0..^3))
126122, 125ffvelcdmd 7060 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
127126, 39syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
128115, 121, 127vtscl 34636 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) ∈ ℂ)
12951, 52ax-mp 5 . . . . . . . . 9 (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻)
13028, 129eqtrdi 2781 . . . . . . . 8 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐻))
131130oveq1d 7405 . . . . . . 7 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐻)vts𝑁))
132131fveq1d 6863 . . . . . 6 (𝑎 = 0 → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐻)vts𝑁)‘𝑥))
1331adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
13417adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐻):ℕ⟶ℂ)
135133, 120, 134vtscl 34636 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐻)vts𝑁)‘𝑥) ∈ ℂ)
136103, 104, 106, 107, 114, 128, 132, 135fprodsplitsn 15962 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
137 uncom 4124 . . . . . . . 8 ((1..^3) ∪ {0}) = ({0} ∪ (1..^3))
138 fzo0sn0fzo1 13723 . . . . . . . . 9 (3 ∈ ℕ → (0..^3) = ({0} ∪ (1..^3)))
1392, 138ax-mp 5 . . . . . . . 8 (0..^3) = ({0} ∪ (1..^3))
140137, 139eqtr4i 2756 . . . . . . 7 ((1..^3) ∪ {0}) = (0..^3)
141140a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((1..^3) ∪ {0}) = (0..^3))
142141prodeq1d 15893 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥))
143 fzo13pr 13717 . . . . . . . . . . . . . . 15 (1..^3) = {1, 2}
144143eleq2i 2821 . . . . . . . . . . . . . 14 (𝑎 ∈ (1..^3) ↔ 𝑎 ∈ {1, 2})
145 vex 3454 . . . . . . . . . . . . . . 15 𝑎 ∈ V
146145elpr 4617 . . . . . . . . . . . . . 14 (𝑎 ∈ {1, 2} ↔ (𝑎 = 1 ∨ 𝑎 = 2))
147144, 146bitri 275 . . . . . . . . . . . . 13 (𝑎 ∈ (1..^3) ↔ (𝑎 = 1 ∨ 𝑎 = 2))
14831adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
14971, 72mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
150148, 149eqtrd 2765 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
15134adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
15271, 86mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
153151, 152eqtrd 2765 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
154150, 153jaodan 959 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 = 1 ∨ 𝑎 = 2)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
155147, 154sylan2b 594 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
156155adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
157156oveq1d 7405 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐾)vts𝑁))
158157fveq1d 6863 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
159158prodeq2dv 15895 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
16022adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐾):ℕ⟶ℂ)
161133, 120, 160vtscl 34636 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ)
162 fprodconst 15951 . . . . . . . . 9 (((1..^3) ∈ Fin ∧ (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
163106, 161, 162syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
164 nnuz 12843 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1652, 164eleqtri 2827 . . . . . . . . . . . 12 3 ∈ (ℤ‘1)
166 hashfzo 14401 . . . . . . . . . . . 12 (3 ∈ (ℤ‘1) → (♯‘(1..^3)) = (3 − 1))
167165, 166ax-mp 5 . . . . . . . . . . 11 (♯‘(1..^3)) = (3 − 1)
168 3m1e2 12316 . . . . . . . . . . 11 (3 − 1) = 2
169167, 168eqtri 2753 . . . . . . . . . 10 (♯‘(1..^3)) = 2
170169a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(1..^3)) = 2)
171170oveq2d 7406 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
172159, 163, 1713eqtrd 2769 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
173172oveq1d 7405 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
174161sqcld 14116 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) ∈ ℂ)
175135, 174mulcomd 11202 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
176173, 175eqtr4d 2768 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
177136, 142, 1763eqtr3d 2773 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
178177oveq1d 7405 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
179178itgeq2dv 25690 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
18027, 102, 1793eqtr3d 2773 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917  {csn 4592  {cpr 4594  {ctp 4596   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   · cmul 11080  cmin 11412  -cneg 11413  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cz 12536  cuz 12800  (,)cioo 13313  ...cfz 13475  ..^cfzo 13622  cexp 14033  chash 14302  ⟨“cs3 14815  Σcsu 15659  cprod 15876  expce 16034  πcpi 16039  citg 25526  Λcvma 27009  reprcrepr 34606  vtscvts 34633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775  df-log 26472  df-vma 27015  df-repr 34607  df-vts 34634
This theorem is referenced by:  tgoldbachgtde  34658
  Copyright terms: Public domain W3C validator