Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethhgt Structured version   Visualization version   GIF version

Theorem circlemethhgt 33256
Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
circlemethhgt.h (𝜑𝐻:ℕ⟶ℝ)
circlemethhgt.k (𝜑𝐾:ℕ⟶ℝ)
circlemethhgt.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlemethhgt (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝐻,𝑥   𝑛,𝐾,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlemethhgt
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethhgt.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12232 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 s3len 14783 . . . . . 6 (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩) = 3
54eqcomi 2745 . . . . 5 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩)
65a1i 11 . . . 4 (𝜑 → 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩))
7 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8remulcld 11185 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
109recnd 11183 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℂ)
11 vmaf 26468 . . . . . . . 8 Λ:ℕ⟶ℝ
1211a1i 11 . . . . . . 7 (𝜑 → Λ:ℕ⟶ℝ)
13 circlemethhgt.h . . . . . . 7 (𝜑𝐻:ℕ⟶ℝ)
14 nnex 12159 . . . . . . . 8 ℕ ∈ V
1514a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
16 inidm 4178 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
1710, 12, 13, 15, 15, 16off 7635 . . . . . 6 (𝜑 → (Λ ∘f · 𝐻):ℕ⟶ℂ)
18 cnex 11132 . . . . . . 7 ℂ ∈ V
1918, 14elmap 8809 . . . . . 6 ((Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐻):ℕ⟶ℂ)
2017, 19sylibr 233 . . . . 5 (𝜑 → (Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ))
21 circlemethhgt.k . . . . . . 7 (𝜑𝐾:ℕ⟶ℝ)
2210, 12, 21, 15, 15, 16off 7635 . . . . . 6 (𝜑 → (Λ ∘f · 𝐾):ℕ⟶ℂ)
2318, 14elmap 8809 . . . . . 6 ((Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐾):ℕ⟶ℂ)
2422, 23sylibr 233 . . . . 5 (𝜑 → (Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ))
2520, 24, 24s3cld 14761 . . . 4 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩ ∈ Word (ℂ ↑m ℕ))
266, 25wrdfd 31792 . . 3 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
271, 3, 26circlemeth 33253 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
28 fveq2 6842 . . . . . 6 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0))
29 fveq2 6842 . . . . . 6 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
3028, 29fveq12d 6849 . . . . 5 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)))
31 fveq2 6842 . . . . . 6 (𝑎 = 1 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
32 fveq2 6842 . . . . . 6 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3331, 32fveq12d 6849 . . . . 5 (𝑎 = 1 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)))
34 fveq2 6842 . . . . . 6 (𝑎 = 2 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
35 fveq2 6842 . . . . . 6 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
3634, 35fveq12d 6849 . . . . 5 (𝑎 = 2 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))
3726adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
3837ffvelcdmda 7035 . . . . . . 7 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
39 elmapi 8787 . . . . . . 7 ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
4038, 39syl 17 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
41 ssidd 3967 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
421nn0zd 12525 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4342adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
44 3nn0 12431 . . . . . . . . 9 3 ∈ ℕ0
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
46 simpr 485 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
4741, 43, 45, 46reprf 33225 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
4847ffvelcdmda 7035 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
4940, 48ffvelcdmd 7036 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5030, 33, 36, 49prodfzo03 33216 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))))
51 ovex 7390 . . . . . . . 8 (Λ ∘f · 𝐻) ∈ V
52 s3fv0 14780 . . . . . . . 8 ((Λ ∘f · 𝐻) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5351, 52mp1i 13 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5453fveq1d 6844 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ ∘f · 𝐻)‘(𝑛‘0)))
55 simpl 483 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝜑)
56 c0ex 11149 . . . . . . . . . . 11 0 ∈ V
5756tpid1 4729 . . . . . . . . . 10 0 ∈ {0, 1, 2}
58 fzo0to3tp 13658 . . . . . . . . . 10 (0..^3) = {0, 1, 2}
5957, 58eleqtrri 2837 . . . . . . . . 9 0 ∈ (0..^3)
6059a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
6147, 60ffvelcdmd 7036 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
62 ffn 6668 . . . . . . . . . 10 (Λ:ℕ⟶ℝ → Λ Fn ℕ)
6311, 62ax-mp 5 . . . . . . . . 9 Λ Fn ℕ
6463a1i 11 . . . . . . . 8 (𝜑 → Λ Fn ℕ)
6513ffnd 6669 . . . . . . . 8 (𝜑𝐻 Fn ℕ)
66 eqidd 2737 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (Λ‘(𝑛‘0)) = (Λ‘(𝑛‘0)))
67 eqidd 2737 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (𝐻‘(𝑛‘0)) = (𝐻‘(𝑛‘0)))
6864, 65, 15, 15, 16, 66, 67ofval 7628 . . . . . . 7 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
6955, 61, 68syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
7054, 69eqtrd 2776 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
71 ovex 7390 . . . . . . . . 9 (Λ ∘f · 𝐾) ∈ V
72 s3fv1 14781 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7371, 72mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7473fveq1d 6844 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ ∘f · 𝐾)‘(𝑛‘1)))
75 1ex 11151 . . . . . . . . . . . 12 1 ∈ V
7675tpid2 4731 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7776, 58eleqtrri 2837 . . . . . . . . . 10 1 ∈ (0..^3)
7877a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
7947, 78ffvelcdmd 7036 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
8021ffnd 6669 . . . . . . . . 9 (𝜑𝐾 Fn ℕ)
81 eqidd 2737 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (Λ‘(𝑛‘1)) = (Λ‘(𝑛‘1)))
82 eqidd 2737 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (𝐾‘(𝑛‘1)) = (𝐾‘(𝑛‘1)))
8364, 80, 15, 15, 16, 81, 82ofval 7628 . . . . . . . 8 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8455, 79, 83syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8574, 84eqtrd 2776 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
86 s3fv2 14782 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8771, 86mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8887fveq1d 6844 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ ∘f · 𝐾)‘(𝑛‘2)))
89 2ex 12230 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4734 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 58eleqtrri 2837 . . . . . . . . . 10 2 ∈ (0..^3)
9291a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
9347, 92ffvelcdmd 7036 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
94 eqidd 2737 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (Λ‘(𝑛‘2)) = (Λ‘(𝑛‘2)))
95 eqidd 2737 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (𝐾‘(𝑛‘2)) = (𝐾‘(𝑛‘2)))
9664, 80, 15, 15, 16, 94, 95ofval 7628 . . . . . . . 8 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9755, 93, 96syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9888, 97eqtrd 2776 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9985, 98oveq12d 7375 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
10070, 99oveq12d 7375 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
10150, 100eqtrd 2776 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
102101sumeq2dv 15588 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
103 nfv 1917 . . . . . 6 𝑎(𝜑𝑥 ∈ (0(,)1))
104 nfcv 2907 . . . . . 6 𝑎(((Λ ∘f · 𝐻)vts𝑁)‘𝑥)
105 fzofi 13879 . . . . . . 7 (1..^3) ∈ Fin
106105a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ∈ Fin)
10756a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 0 ∈ V)
108 eqid 2736 . . . . . . . . 9 0 = 0
109108orci 863 . . . . . . . 8 (0 = 0 ∨ 0 = 3)
110 0elfz 13538 . . . . . . . . 9 (3 ∈ ℕ0 → 0 ∈ (0...3))
111 elfznelfzob 13678 . . . . . . . . 9 (0 ∈ (0...3) → (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3)))
11244, 110, 111mp2b 10 . . . . . . . 8 (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3))
113109, 112mpbir 230 . . . . . . 7 ¬ 0 ∈ (1..^3)
114113a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ¬ 0 ∈ (1..^3))
1151ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑁 ∈ ℕ0)
116 ioossre 13325 . . . . . . . . . . 11 (0(,)1) ⊆ ℝ
117 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
118116, 117sstri 3953 . . . . . . . . . 10 (0(,)1) ⊆ ℂ
119118a1i 11 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℂ)
120119sselda 3944 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
121120adantr 481 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑥 ∈ ℂ)
12226ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
123 fzo0ss1 13602 . . . . . . . . . . 11 (1..^3) ⊆ (0..^3)
124123a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ⊆ (0..^3))
125124sselda 3944 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑎 ∈ (0..^3))
126122, 125ffvelcdmd 7036 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
127126, 39syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
128115, 121, 127vtscl 33251 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) ∈ ℂ)
12951, 52ax-mp 5 . . . . . . . . 9 (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻)
13028, 129eqtrdi 2792 . . . . . . . 8 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐻))
131130oveq1d 7372 . . . . . . 7 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐻)vts𝑁))
132131fveq1d 6844 . . . . . 6 (𝑎 = 0 → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐻)vts𝑁)‘𝑥))
1331adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
13417adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐻):ℕ⟶ℂ)
135133, 120, 134vtscl 33251 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐻)vts𝑁)‘𝑥) ∈ ℂ)
136103, 104, 106, 107, 114, 128, 132, 135fprodsplitsn 15872 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
137 uncom 4113 . . . . . . . 8 ((1..^3) ∪ {0}) = ({0} ∪ (1..^3))
138 fzo0sn0fzo1 13661 . . . . . . . . 9 (3 ∈ ℕ → (0..^3) = ({0} ∪ (1..^3)))
1392, 138ax-mp 5 . . . . . . . 8 (0..^3) = ({0} ∪ (1..^3))
140137, 139eqtr4i 2767 . . . . . . 7 ((1..^3) ∪ {0}) = (0..^3)
141140a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((1..^3) ∪ {0}) = (0..^3))
142141prodeq1d 15804 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥))
143 fzo13pr 13656 . . . . . . . . . . . . . . 15 (1..^3) = {1, 2}
144143eleq2i 2829 . . . . . . . . . . . . . 14 (𝑎 ∈ (1..^3) ↔ 𝑎 ∈ {1, 2})
145 vex 3449 . . . . . . . . . . . . . . 15 𝑎 ∈ V
146145elpr 4609 . . . . . . . . . . . . . 14 (𝑎 ∈ {1, 2} ↔ (𝑎 = 1 ∨ 𝑎 = 2))
147144, 146bitri 274 . . . . . . . . . . . . 13 (𝑎 ∈ (1..^3) ↔ (𝑎 = 1 ∨ 𝑎 = 2))
14831adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
14971, 72mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
150148, 149eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
15134adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
15271, 86mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
153151, 152eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
154150, 153jaodan 956 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 = 1 ∨ 𝑎 = 2)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
155147, 154sylan2b 594 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
156155adantlr 713 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
157156oveq1d 7372 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐾)vts𝑁))
158157fveq1d 6844 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
159158prodeq2dv 15806 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
16022adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐾):ℕ⟶ℂ)
161133, 120, 160vtscl 33251 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ)
162 fprodconst 15861 . . . . . . . . 9 (((1..^3) ∈ Fin ∧ (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
163106, 161, 162syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
164 nnuz 12806 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1652, 164eleqtri 2836 . . . . . . . . . . . 12 3 ∈ (ℤ‘1)
166 hashfzo 14329 . . . . . . . . . . . 12 (3 ∈ (ℤ‘1) → (♯‘(1..^3)) = (3 − 1))
167165, 166ax-mp 5 . . . . . . . . . . 11 (♯‘(1..^3)) = (3 − 1)
168 3m1e2 12281 . . . . . . . . . . 11 (3 − 1) = 2
169167, 168eqtri 2764 . . . . . . . . . 10 (♯‘(1..^3)) = 2
170169a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(1..^3)) = 2)
171170oveq2d 7373 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
172159, 163, 1713eqtrd 2780 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
173172oveq1d 7372 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
174161sqcld 14049 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) ∈ ℂ)
175135, 174mulcomd 11176 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
176173, 175eqtr4d 2779 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
177136, 142, 1763eqtr3d 2784 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
178177oveq1d 7372 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
179178itgeq2dv 25146 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
18027, 102, 1793eqtr3d 2784 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  wss 3910  {csn 4586  {cpr 4588  {ctp 4590   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   · cmul 11056  cmin 11385  -cneg 11386  cn 12153  2c2 12208  3c3 12209  0cn0 12413  cz 12499  cuz 12763  (,)cioo 13264  ...cfz 13424  ..^cfzo 13567  cexp 13967  chash 14230  ⟨“cs3 14731  Σcsu 15570  cprod 15788  expce 15944  πcpi 15949  citg 24982  Λcvma 26441  reprcrepr 33221  vtscvts 33248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231  df-log 25912  df-vma 26447  df-repr 33222  df-vts 33249
This theorem is referenced by:  tgoldbachgtde  33273
  Copyright terms: Public domain W3C validator