Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethhgt Structured version   Visualization version   GIF version

Theorem circlemethhgt 34634
Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
circlemethhgt.h (𝜑𝐻:ℕ⟶ℝ)
circlemethhgt.k (𝜑𝐾:ℕ⟶ℝ)
circlemethhgt.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
circlemethhgt (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Distinct variable groups:   𝑛,𝐻,𝑥   𝑛,𝐾,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥

Proof of Theorem circlemethhgt
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethhgt.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 3nn 12265 . . . 4 3 ∈ ℕ
32a1i 11 . . 3 (𝜑 → 3 ∈ ℕ)
4 s3len 14860 . . . . . 6 (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩) = 3
54eqcomi 2738 . . . . 5 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩)
65a1i 11 . . . 4 (𝜑 → 3 = (♯‘⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩))
7 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
8 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
97, 8remulcld 11204 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
109recnd 11202 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℂ)
11 vmaf 27029 . . . . . . . 8 Λ:ℕ⟶ℝ
1211a1i 11 . . . . . . 7 (𝜑 → Λ:ℕ⟶ℝ)
13 circlemethhgt.h . . . . . . 7 (𝜑𝐻:ℕ⟶ℝ)
14 nnex 12192 . . . . . . . 8 ℕ ∈ V
1514a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
16 inidm 4190 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
1710, 12, 13, 15, 15, 16off 7671 . . . . . 6 (𝜑 → (Λ ∘f · 𝐻):ℕ⟶ℂ)
18 cnex 11149 . . . . . . 7 ℂ ∈ V
1918, 14elmap 8844 . . . . . 6 ((Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐻):ℕ⟶ℂ)
2017, 19sylibr 234 . . . . 5 (𝜑 → (Λ ∘f · 𝐻) ∈ (ℂ ↑m ℕ))
21 circlemethhgt.k . . . . . . 7 (𝜑𝐾:ℕ⟶ℝ)
2210, 12, 21, 15, 15, 16off 7671 . . . . . 6 (𝜑 → (Λ ∘f · 𝐾):ℕ⟶ℂ)
2318, 14elmap 8844 . . . . . 6 ((Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ) ↔ (Λ ∘f · 𝐾):ℕ⟶ℂ)
2422, 23sylibr 234 . . . . 5 (𝜑 → (Λ ∘f · 𝐾) ∈ (ℂ ↑m ℕ))
2520, 24, 24s3cld 14838 . . . 4 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩ ∈ Word (ℂ ↑m ℕ))
266, 25wrdfd 14484 . . 3 (𝜑 → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
271, 3, 26circlemeth 34631 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
28 fveq2 6858 . . . . . 6 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0))
29 fveq2 6858 . . . . . 6 (𝑎 = 0 → (𝑛𝑎) = (𝑛‘0))
3028, 29fveq12d 6865 . . . . 5 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)))
31 fveq2 6858 . . . . . 6 (𝑎 = 1 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
32 fveq2 6858 . . . . . 6 (𝑎 = 1 → (𝑛𝑎) = (𝑛‘1))
3331, 32fveq12d 6865 . . . . 5 (𝑎 = 1 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)))
34 fveq2 6858 . . . . . 6 (𝑎 = 2 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
35 fveq2 6858 . . . . . 6 (𝑎 = 2 → (𝑛𝑎) = (𝑛‘2))
3634, 35fveq12d 6865 . . . . 5 (𝑎 = 2 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))
3726adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
3837ffvelcdmda 7056 . . . . . . 7 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
39 elmapi 8822 . . . . . . 7 ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
4038, 39syl 17 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
41 ssidd 3970 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ℕ ⊆ ℕ)
421nn0zd 12555 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
4342adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑁 ∈ ℤ)
44 3nn0 12460 . . . . . . . . 9 3 ∈ ℕ0
4544a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 3 ∈ ℕ0)
46 simpr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
4741, 43, 45, 46reprf 34603 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝑛:(0..^3)⟶ℕ)
4847ffvelcdmda 7056 . . . . . 6 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → (𝑛𝑎) ∈ ℕ)
4940, 48ffvelcdmd 7057 . . . . 5 (((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) ∧ 𝑎 ∈ (0..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) ∈ ℂ)
5030, 33, 36, 49prodfzo03 34594 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))))
51 ovex 7420 . . . . . . . 8 (Λ ∘f · 𝐻) ∈ V
52 s3fv0 14857 . . . . . . . 8 ((Λ ∘f · 𝐻) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5351, 52mp1i 13 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻))
5453fveq1d 6860 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ ∘f · 𝐻)‘(𝑛‘0)))
55 simpl 482 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 𝜑)
56 c0ex 11168 . . . . . . . . . . 11 0 ∈ V
5756tpid1 4732 . . . . . . . . . 10 0 ∈ {0, 1, 2}
58 fzo0to3tp 13713 . . . . . . . . . 10 (0..^3) = {0, 1, 2}
5957, 58eleqtrri 2827 . . . . . . . . 9 0 ∈ (0..^3)
6059a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 0 ∈ (0..^3))
6147, 60ffvelcdmd 7057 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘0) ∈ ℕ)
62 ffn 6688 . . . . . . . . . 10 (Λ:ℕ⟶ℝ → Λ Fn ℕ)
6311, 62ax-mp 5 . . . . . . . . 9 Λ Fn ℕ
6463a1i 11 . . . . . . . 8 (𝜑 → Λ Fn ℕ)
6513ffnd 6689 . . . . . . . 8 (𝜑𝐻 Fn ℕ)
66 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (Λ‘(𝑛‘0)) = (Λ‘(𝑛‘0)))
67 eqidd 2730 . . . . . . . 8 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → (𝐻‘(𝑛‘0)) = (𝐻‘(𝑛‘0)))
6864, 65, 15, 15, 16, 66, 67ofval 7664 . . . . . . 7 ((𝜑 ∧ (𝑛‘0) ∈ ℕ) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
6955, 61, 68syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐻)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
7054, 69eqtrd 2764 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) = ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))))
71 ovex 7420 . . . . . . . . 9 (Λ ∘f · 𝐾) ∈ V
72 s3fv1 14858 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7371, 72mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
7473fveq1d 6860 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ ∘f · 𝐾)‘(𝑛‘1)))
75 1ex 11170 . . . . . . . . . . . 12 1 ∈ V
7675tpid2 4734 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7776, 58eleqtrri 2827 . . . . . . . . . 10 1 ∈ (0..^3)
7877a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 1 ∈ (0..^3))
7947, 78ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘1) ∈ ℕ)
8021ffnd 6689 . . . . . . . . 9 (𝜑𝐾 Fn ℕ)
81 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (Λ‘(𝑛‘1)) = (Λ‘(𝑛‘1)))
82 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → (𝐾‘(𝑛‘1)) = (𝐾‘(𝑛‘1)))
8364, 80, 15, 15, 16, 81, 82ofval 7664 . . . . . . . 8 ((𝜑 ∧ (𝑛‘1) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8455, 79, 83syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
8574, 84eqtrd 2764 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) = ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))))
86 s3fv2 14859 . . . . . . . . 9 ((Λ ∘f · 𝐾) ∈ V → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8771, 86mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
8887fveq1d 6860 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ ∘f · 𝐾)‘(𝑛‘2)))
89 2ex 12263 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4737 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 58eleqtrri 2827 . . . . . . . . . 10 2 ∈ (0..^3)
9291a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → 2 ∈ (0..^3))
9347, 92ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (𝑛‘2) ∈ ℕ)
94 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (Λ‘(𝑛‘2)) = (Λ‘(𝑛‘2)))
95 eqidd 2730 . . . . . . . . 9 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → (𝐾‘(𝑛‘2)) = (𝐾‘(𝑛‘2)))
9664, 80, 15, 15, 16, 94, 95ofval 7664 . . . . . . . 8 ((𝜑 ∧ (𝑛‘2) ∈ ℕ) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9755, 93, 96syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((Λ ∘f · 𝐾)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9888, 97eqtrd 2764 . . . . . 6 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)) = ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))
9985, 98oveq12d 7405 . . . . 5 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2))) = (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))
10070, 99oveq12d 7405 . . . 4 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0)‘(𝑛‘0)) · (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1)‘(𝑛‘1)) · ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2)‘(𝑛‘2)))) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
10150, 100eqtrd 2764 . . 3 ((𝜑𝑛 ∈ (ℕ(repr‘3)𝑁)) → ∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
102101sumeq2dv 15668 . 2 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)∏𝑎 ∈ (0..^3)((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)‘(𝑛𝑎)) = Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))))
103 nfv 1914 . . . . . 6 𝑎(𝜑𝑥 ∈ (0(,)1))
104 nfcv 2891 . . . . . 6 𝑎(((Λ ∘f · 𝐻)vts𝑁)‘𝑥)
105 fzofi 13939 . . . . . . 7 (1..^3) ∈ Fin
106105a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ∈ Fin)
10756a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → 0 ∈ V)
108 eqid 2729 . . . . . . . . 9 0 = 0
109108orci 865 . . . . . . . 8 (0 = 0 ∨ 0 = 3)
110 0elfz 13585 . . . . . . . . 9 (3 ∈ ℕ0 → 0 ∈ (0...3))
111 elfznelfzob 13734 . . . . . . . . 9 (0 ∈ (0...3) → (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3)))
11244, 110, 111mp2b 10 . . . . . . . 8 (¬ 0 ∈ (1..^3) ↔ (0 = 0 ∨ 0 = 3))
113109, 112mpbir 231 . . . . . . 7 ¬ 0 ∈ (1..^3)
114113a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ¬ 0 ∈ (1..^3))
1151ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑁 ∈ ℕ0)
116 ioossre 13368 . . . . . . . . . . 11 (0(,)1) ⊆ ℝ
117 ax-resscn 11125 . . . . . . . . . . 11 ℝ ⊆ ℂ
118116, 117sstri 3956 . . . . . . . . . 10 (0(,)1) ⊆ ℂ
119118a1i 11 . . . . . . . . 9 (𝜑 → (0(,)1) ⊆ ℂ)
120119sselda 3946 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → 𝑥 ∈ ℂ)
121120adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑥 ∈ ℂ)
12226ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩:(0..^3)⟶(ℂ ↑m ℕ))
123 fzo0ss1 13650 . . . . . . . . . . 11 (1..^3) ⊆ (0..^3)
124123a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (1..^3) ⊆ (0..^3))
125124sselda 3946 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → 𝑎 ∈ (0..^3))
126122, 125ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) ∈ (ℂ ↑m ℕ))
127126, 39syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎):ℕ⟶ℂ)
128115, 121, 127vtscl 34629 . . . . . 6 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) ∈ ℂ)
12951, 52ax-mp 5 . . . . . . . . 9 (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘0) = (Λ ∘f · 𝐻)
13028, 129eqtrdi 2780 . . . . . . . 8 (𝑎 = 0 → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐻))
131130oveq1d 7402 . . . . . . 7 (𝑎 = 0 → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐻)vts𝑁))
132131fveq1d 6860 . . . . . 6 (𝑎 = 0 → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐻)vts𝑁)‘𝑥))
1331adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → 𝑁 ∈ ℕ0)
13417adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐻):ℕ⟶ℂ)
135133, 120, 134vtscl 34629 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐻)vts𝑁)‘𝑥) ∈ ℂ)
136103, 104, 106, 107, 114, 128, 132, 135fprodsplitsn 15955 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
137 uncom 4121 . . . . . . . 8 ((1..^3) ∪ {0}) = ({0} ∪ (1..^3))
138 fzo0sn0fzo1 13716 . . . . . . . . 9 (3 ∈ ℕ → (0..^3) = ({0} ∪ (1..^3)))
1392, 138ax-mp 5 . . . . . . . 8 (0..^3) = ({0} ∪ (1..^3))
140137, 139eqtr4i 2755 . . . . . . 7 ((1..^3) ∪ {0}) = (0..^3)
141140a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((1..^3) ∪ {0}) = (0..^3))
142141prodeq1d 15886 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ ((1..^3) ∪ {0})(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥))
143 fzo13pr 13710 . . . . . . . . . . . . . . 15 (1..^3) = {1, 2}
144143eleq2i 2820 . . . . . . . . . . . . . 14 (𝑎 ∈ (1..^3) ↔ 𝑎 ∈ {1, 2})
145 vex 3451 . . . . . . . . . . . . . . 15 𝑎 ∈ V
146145elpr 4614 . . . . . . . . . . . . . 14 (𝑎 ∈ {1, 2} ↔ (𝑎 = 1 ∨ 𝑎 = 2))
147144, 146bitri 275 . . . . . . . . . . . . 13 (𝑎 ∈ (1..^3) ↔ (𝑎 = 1 ∨ 𝑎 = 2))
14831adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1))
14971, 72mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘1) = (Λ ∘f · 𝐾))
150148, 149eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 1) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
15134adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2))
15271, 86mp1i 13 . . . . . . . . . . . . . . 15 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘2) = (Λ ∘f · 𝐾))
153151, 152eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑎 = 2) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
154150, 153jaodan 959 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 = 1 ∨ 𝑎 = 2)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
155147, 154sylan2b 594 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
156155adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎) = (Λ ∘f · 𝐾))
157156oveq1d 7402 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → ((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁) = ((Λ ∘f · 𝐾)vts𝑁))
158157fveq1d 6860 . . . . . . . . 9 (((𝜑𝑥 ∈ (0(,)1)) ∧ 𝑎 ∈ (1..^3)) → (((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = (((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
159158prodeq2dv 15888 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥))
16022adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)1)) → (Λ ∘f · 𝐾):ℕ⟶ℂ)
161133, 120, 160vtscl 34629 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ)
162 fprodconst 15944 . . . . . . . . 9 (((1..^3) ∈ Fin ∧ (((Λ ∘f · 𝐾)vts𝑁)‘𝑥) ∈ ℂ) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
163106, 161, 162syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((Λ ∘f · 𝐾)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))))
164 nnuz 12836 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1652, 164eleqtri 2826 . . . . . . . . . . . 12 3 ∈ (ℤ‘1)
166 hashfzo 14394 . . . . . . . . . . . 12 (3 ∈ (ℤ‘1) → (♯‘(1..^3)) = (3 − 1))
167165, 166ax-mp 5 . . . . . . . . . . 11 (♯‘(1..^3)) = (3 − 1)
168 3m1e2 12309 . . . . . . . . . . 11 (3 − 1) = 2
169167, 168eqtri 2752 . . . . . . . . . 10 (♯‘(1..^3)) = 2
170169a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)1)) → (♯‘(1..^3)) = 2)
171170oveq2d 7403 . . . . . . . 8 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑(♯‘(1..^3))) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
172159, 163, 1713eqtrd 2768 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2))
173172oveq1d 7402 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
174161sqcld 14109 . . . . . . 7 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) ∈ ℂ)
175135, 174mulcomd 11195 . . . . . 6 ((𝜑𝑥 ∈ (0(,)1)) → ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) = (((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)))
176173, 175eqtr4d 2767 . . . . 5 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (1..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (((Λ ∘f · 𝐻)vts𝑁)‘𝑥)) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
177136, 142, 1763eqtr3d 2772 . . . 4 ((𝜑𝑥 ∈ (0(,)1)) → ∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) = ((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)))
178177oveq1d 7402 . . 3 ((𝜑𝑥 ∈ (0(,)1)) → (∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) = (((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
179178itgeq2dv 25683 . 2 (𝜑 → ∫(0(,)1)(∏𝑎 ∈ (0..^3)(((⟨“(Λ ∘f · 𝐻)(Λ ∘f · 𝐾)(Λ ∘f · 𝐾)”⟩‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
18027, 102, 1793eqtr3d 2772 1 (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  wss 3914  {csn 4589  {cpr 4591  {ctp 4593   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   · cmul 11073  cmin 11405  -cneg 11406  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  (,)cioo 13306  ...cfz 13468  ..^cfzo 13615  cexp 14026  chash 14295  ⟨“cs3 14808  Σcsu 15652  cprod 15869  expce 16027  πcpi 16032  citg 25519  Λcvma 27002  reprcrepr 34599  vtscvts 34626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768  df-log 26465  df-vma 27008  df-repr 34600  df-vts 34627
This theorem is referenced by:  tgoldbachgtde  34651
  Copyright terms: Public domain W3C validator