MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-nul Structured version   Visualization version   GIF version

Axiom ax-nul 5306
Description: The Null Set Axiom of ZF set theory. It was derived as axnul 5305 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 7-Aug-2003.)
Assertion
Ref Expression
ax-nul 𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Axiom ax-nul
StepHypRef Expression
1 vy . . . . 5 setvar 𝑦
2 vx . . . . 5 setvar 𝑥
31, 2wel 2109 . . . 4 wff 𝑦𝑥
43wn 3 . . 3 wff ¬ 𝑦𝑥
54, 1wal 1538 . 2 wff 𝑦 ¬ 𝑦𝑥
65, 2wex 1779 1 wff 𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff setvar class
This axiom is referenced by:  0ex  5307  dtruALT2  5370  axprlem1  5423  axpr  5427  axprlem4OLD  5429  axprlem5OLD  5430  exexneq  5439  dtruOLD  5446  axsepg2  35096  axnulg  35106  eu0  43533
  Copyright terms: Public domain W3C validator