Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eu0 | Structured version Visualization version GIF version |
Description: There is only one empty set. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
eu0 | ⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | ax-gen 1799 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ ∅ |
3 | ax-nul 5225 | . . 3 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
4 | nulmo 2714 | . . 3 ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
5 | df-eu 2569 | . . 3 ⊢ (∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥)) | |
6 | 3, 4, 5 | mpbir2an 707 | . 2 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
7 | 2, 6 | pm3.2i 470 | 1 ⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ∃*wmo 2538 ∃!weu 2568 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-dif 3886 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |