Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eu0 | Structured version Visualization version GIF version |
Description: There is only one empty set. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
eu0 | ⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4264 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥 ¬ 𝑥 ∈ ∅ |
3 | ax-nul 5230 | . . 3 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
4 | nulmo 2714 | . . 3 ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | |
5 | df-eu 2569 | . . 3 ⊢ (∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥)) | |
6 | 3, 4, 5 | mpbir2an 708 | . 2 ⊢ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
7 | 2, 6 | pm3.2i 471 | 1 ⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∃*wmo 2538 ∃!weu 2568 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |