Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu0 Structured version   Visualization version   GIF version

Theorem eu0 43561
Description: There is only one empty set. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
eu0 (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem eu0
StepHypRef Expression
1 noel 4285 . . 3 ¬ 𝑥 ∈ ∅
21ax-gen 1796 . 2 𝑥 ¬ 𝑥 ∈ ∅
3 ax-nul 5242 . . 3 𝑥𝑦 ¬ 𝑦𝑥
4 nulmo 2708 . . 3 ∃*𝑥𝑦 ¬ 𝑦𝑥
5 df-eu 2564 . . 3 (∃!𝑥𝑦 ¬ 𝑦𝑥 ↔ (∃𝑥𝑦 ¬ 𝑦𝑥 ∧ ∃*𝑥𝑦 ¬ 𝑦𝑥))
63, 4, 5mpbir2an 711 . 2 ∃!𝑥𝑦 ¬ 𝑦𝑥
72, 6pm3.2i 470 1 (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1539  wex 1780  wcel 2111  ∃*wmo 2533  ∃!weu 2563  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-dif 3900  df-nul 4281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator