| Metamath
Proof Explorer Theorem List (p. 54 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elssabg 5301* | Membership in a class abstraction involving a subset. Unlike elabg 3646, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) | ||
| Theorem | intex 5302 | The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | ||
| Theorem | intnex 5303 | If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
| ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) | ||
| Theorem | intexab 5304 | The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | intexrab 5305 | The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | iinexg 5306* | The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | intabs 5307* | Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = ∩ {𝑦 ∣ 𝜓} → (𝜑 ↔ 𝜒)) & ⊢ (∩ {𝑦 ∣ 𝜓} ⊆ 𝐴 ∧ 𝜒) ⇒ ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑} | ||
| Theorem | inuni 5308* | The intersection of a union ∪ 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
| ⊢ (∪ 𝐴 ∩ 𝐵) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)} | ||
| Theorem | axpweq 5309* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 5323 is not used by the proof. When ax-pow 5323 is assumed and 𝐴 is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if 𝐴 is a set (see pwexr 7744). (Contributed by NM, 22-Jun-2009.) |
| ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) | ||
| Theorem | pwnss 5310 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Proof shortened by BJ, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | ||
| Theorem | pwne 5311 | No set equals its power set. The sethood antecedent is necessary; compare pwv 4871. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | difelpw 5312 | A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) | ||
| Theorem | class2set 5313* | The class of elements of 𝐴 "such that 𝐴 is a set" is a set. That class is equal to 𝐴 when 𝐴 is a set (see class2seteq 3678) and to the empty set when 𝐴 is a proper class. (Contributed by NM, 16-Oct-2003.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V | ||
| Theorem | 0elpw 5314 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| ⊢ ∅ ∈ 𝒫 𝐴 | ||
| Theorem | pwne0 5315 | A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
| ⊢ 𝒫 𝐴 ≠ ∅ | ||
| Theorem | 0nep0 5316 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∅ ≠ {∅} | ||
| Theorem | 0inp0 5317 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
| Theorem | unidif0 5318 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
| Theorem | eqsnuniex 5319 | If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | ||
| Theorem | iin0 5320* | An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
| ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | ||
| Theorem | notzfaus 5321* | In the Separation Scheme zfauscl 5256, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.) (Proof shortened by BJ, 18-Nov-2023.) |
| ⊢ 𝐴 = {∅} & ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) ⇒ ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | intv 5322 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
| ⊢ ∩ V = ∅ | ||
| Axiom | ax-pow 5323* | Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. The variant axpow2 5325 uses explicit subset notation. A version using class notation is pwex 5338. (Contributed by NM, 21-Jun-1993.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfpow 5324* | Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpow2 5325* | A variant of the Axiom of Power Sets ax-pow 5323 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | ||
| Theorem | axpow3 5326* | A variant of the Axiom of Power Sets ax-pow 5323. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | ||
| Theorem | elALT2 5327* | Alternate proof of el 5400 using ax-9 2119 and ax-pow 5323 instead of ax-pr 5390. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | dtruALT2 5328* | Alternate proof of dtru 5399 using ax-pow 5323 instead of ax-pr 5390. See dtruALT 5346 for another proof using ax-pow 5323 instead of ax-pr 5390. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2371. (Revised by BJ, 31-May-2019.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | dtrucor 5329* | Corollary of dtru 5399. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 5330. (Contributed by NM, 27-Jun-2002.) |
| ⊢ 𝑥 = 𝑦 ⇒ ⊢ 𝑥 ≠ 𝑦 | ||
| Theorem | dtrucor2 5330 | The theorem form of the deduction dtrucor 5329 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad 5329. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 20-Oct-2007.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
| Theorem | dvdemo1 5331* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑦 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑧).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥) with 𝑥, 𝑦 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑦 ∈ 𝑥) with 𝑥, 𝑦 disjoint). Compare with dvdemo2 5332, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5332 for details on the "disjoint variable" mechanism. (The verb "bundle" to express this phenomenon was introduced by Raph Levien.) Note that dvdemo1 5331 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑧 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require ax-11 2158 nor ax-13 2371. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.) |
| ⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
| Theorem | dvdemo2 5332* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑧 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑦).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑥 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑧 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint). Compare with dvdemo1 5331, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5331 for details on the "disjoint variable" mechanism. Note that dvdemo2 5332 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑦 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require any of the auxiliary axioms ax-10 2142, ax-11 2158, ax-12 2178, ax-13 2371. (Contributed by NM, 1-Dec-2006.) Avoid ax-13 2371. (Revised by BJ, 13-Jan-2024.) |
| ⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
| Theorem | nfnid 5333 | A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 5328 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| ⊢ ¬ Ⅎ𝑥𝑥 | ||
| Theorem | nfcvb 5334 | The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of Ⅎ in the obvious way. This theorem is not true in a one-element domain, because then Ⅎ𝑥𝑦 and ∀𝑥𝑥 = 𝑦 will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2371. (New usage is discouraged.) |
| ⊢ (Ⅎ𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | vpwex 5335 | Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5336 from vpwex 5335. (Revised by BJ, 10-Aug-2022.) |
| ⊢ 𝒫 𝑥 ∈ V | ||
| Theorem | pwexg 5336 | Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | ||
| Theorem | pwexd 5337 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
| Theorem | pwex 5338 | Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ∈ V | ||
| Theorem | pwel 5339 | Quantitative version of pwexg 5336: the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) Remove use of ax-nul 5264 and ax-pr 5390 and shorten proof. (Revised by BJ, 13-Apr-2024.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) | ||
| Theorem | abssexg 5340* | Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | ||
| Theorem | snexALT 5341 | Alternate proof of snex 5394 using Power Set (ax-pow 5323) instead of Pairing (ax-pr 5390). Unlike in the proof of zfpair 5379, Replacement (ax-rep 5237) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | p0ex 5342 | The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5343. (Contributed by NM, 23-Dec-1993.) |
| ⊢ {∅} ∈ V | ||
| Theorem | p0exALT 5343 | Alternate proof of p0ex 5342 which is quite different and longer if snexALT 5341 is expanded. (Contributed by NM, 23-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {∅} ∈ V | ||
| Theorem | pp0ex 5344 | The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
| ⊢ {∅, {∅}} ∈ V | ||
| Theorem | ord3ex 5345 | The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7714. (Contributed by NM, 2-May-2009.) |
| ⊢ {∅, {∅}, {∅, {∅}}} ∈ V | ||
| Theorem | dtruALT 5346* |
Alternate proof of dtru 5399 which requires more axioms but is shorter and
may be easier to understand. Like dtruALT2 5328, it uses ax-pow 5323 rather
than ax-pr 5390.
Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3575 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | axc16b 5347* | This theorem shows that Axiom ax-c16 38892 is redundant in the presence of Theorem dtruALT2 5328, which states simply that at least two things exist. This justifies the remark at mmzfcnd.html#twoness 5328 (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
| Theorem | eunex 5348 | Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) (Proof shortened by BJ, 2-Jan-2023.) |
| ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | ||
| Theorem | eusv1 5349* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | eusvnf 5350* | Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | ||
| Theorem | eusvnfb 5351* | Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | eusv2i 5352* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | ||
| Theorem | eusv2nf 5353* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) | ||
| Theorem | eusv2 5354* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | reusv1 5355* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv2lem1 5356* | Lemma for reusv2 5361. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | reusv2lem2 5357* | Lemma for reusv2 5361. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | reusv2lem3 5358* | Lemma for reusv2 5361. (Contributed by NM, 14-Dec-2012.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | reusv2lem4 5359* | Lemma for reusv2 5361. (Contributed by NM, 13-Dec-2012.) |
| ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | ||
| Theorem | reusv2lem5 5360* | Lemma for reusv2 5361. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
| Theorem | reusv2 5361* | Two ways to express single-valuedness of a class expression 𝐶(𝑦) that is constant for those 𝑦 ∈ 𝐵 such that 𝜑. The first antecedent ensures that the constant value belongs to the existential uniqueness domain 𝐴, and the second ensures that 𝐶(𝑦) is evaluated for at least one 𝑦. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∀𝑦 ∈ 𝐵 (𝜑 → 𝐶 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐵 𝜑) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv3i 5362* | Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | ||
| Theorem | reusv3 5363* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 5355 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | eusv4 5364* | Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | alxfr 5365* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | ralxfrd 5366* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd 5367* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr2d 5368* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfr2d 5369* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfrd2 5370* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 5366. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd2 5371* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 5367. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr 5372* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | ralxfrALT 5373* | Alternate proof of ralxfr 5372 which does not use ralxfrd 5366. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rexxfr 5374* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rabxfrd 5375* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) | ||
| Theorem | rabxfr 5376* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) | ||
| Theorem | reuhypd 5377* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 7381. (Contributed by NM, 16-Jan-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | reuhyp 5378* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3726. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | zfpair 5379 |
The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of
[TakeutiZaring] p. 15. In some
textbooks this is stated as a separate
axiom; here we show it is redundant since it can be derived from the
other axioms.
This theorem should not be referenced by any proof other than axprALT 5380. Instead, use zfpair2 5391 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | axprALT 5380* | Alternate proof of axpr 5385. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | axprlem1 5381* | Lemma for axpr 5385. There exists a set to which all empty sets belong. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
| ⊢ ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥) | ||
| Theorem | axprlem2 5382* | Lemma for axpr 5385. There exists a set to which all sets whose only members are empty sets belong. (Contributed by Rohan Ridenour, 9-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
| ⊢ ∃𝑥∀𝑦(∀𝑧 ∈ 𝑦 ∀𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥) | ||
| Theorem | axprlem3 5383* | Lemma for axpr 5385. Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem4 5384* | Lemma for axpr 5385. If an existing set of empty sets corresponds to one element of the pair, then the element is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) |
| ⊢ ∃𝑠∀𝑛𝜑 & ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) & ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) ⇒ ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) | ||
| Theorem | axpr 5385* |
Unabbreviated version of the Axiom of Pairing of ZF set theory, derived
as a theorem from the other axioms.
This theorem should not be referenced by any proof. Instead, use ax-pr 5390 below so that the uses of the Axiom of Pairing can be more easily identified. For a shorter proof using ax-ext 2702, see axprALT 5380. (Contributed by NM, 14-Nov-2006.) Remove dependency on ax-ext 2702. (Revised by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by BJ, 13-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) Use ax-pr 5390 instead. (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | axprlem3OLD 5386* | Obsolete version of axprlem3 5383 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem4OLD 5387* | Obsolete version of axprlem4 5384 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem5OLD 5388* | Obsolete version of axprlem4 5384 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprOLD 5389* | Obsolete version of axpr 5385 as of 18-Sep-2025. (Contributed by NM, 14-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Axiom | ax-pr 5390* | The Axiom of Pairing of ZF set theory. It was derived as Theorem axpr 5385 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | zfpair2 5391 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 5390. See zfpair 5379 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | vsnex 5392 | A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| ⊢ {𝑥} ∈ V | ||
| Theorem | snexg 5393 | A singleton built on a set is a set. Special case of snex 5394 which does not require ax-nul 5264 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5394 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | snex 5394 | A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 5341. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | prex 5395 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4734), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.) |
| ⊢ {𝐴, 𝐵} ∈ V | ||
| Theorem | exel 5396* |
There exist two sets, one a member of the other.
This theorem looks similar to el 5400, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1809, ax-6 1967, and ax-pr 5390. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5397. (Contributed by SN, 23-Dec-2024.) |
| ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
| Theorem | exexneq 5397* | There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2371. (Revised by BJ, 31-May-2019.) Avoid ax-8 2111. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5390 instead of ax-pow 5323. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5399. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
| Theorem | exneq 5398* |
Given any set (the "𝑦 " in the statement), there
exists a set not
equal to it.
The same statement without disjoint variable condition is false, since we do not have ∃𝑥¬ 𝑥 = 𝑥. This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext 2702, ax-sep 5254, or ax-pow 5323 nor auxiliary logical axiom schemes ax-10 2142 to ax-13 2371. See dtruALT 5346 for a shorter proof using more axioms, and dtruALT2 5328 for a proof using ax-pow 5323 instead of ax-pr 5390. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2371. (Revised by BJ, 31-May-2019.) Avoid ax-8 2111. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5390 instead of ax-pow 5323. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5399. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | dtru 5399* | Given any set (the "𝑦 " in the statement), not all sets are equal to it. The same statement without disjoint variable condition is false since it contradicts stdpc6 2028. The same comments and revision history concerning axiom usage as in exneq 5398 apply. See dtruALT 5346 and dtruALT2 5328 for alternate proofs avoiding ax-pr 5390. (Contributed by NM, 7-Nov-2006.) Extract exneq 5398 as an intermediate result. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | el 5400* | Any set is an element of some other set. See elALT 5403 for a shorter proof using more axioms, and see elALT2 5327 for a proof that uses ax-9 2119 and ax-pow 5323 instead of ax-pr 5390. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Use ax-pr 5390 instead of ax-9 2119 and ax-pow 5323. (Revised by BTernaryTau, 2-Dec-2024.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |