| Metamath
Proof Explorer Theorem List (p. 54 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 0inp0 5301 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
| Theorem | unidif0 5302 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
| Theorem | eqsnuniex 5303 | If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
| ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | ||
| Theorem | iin0 5304* | An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
| ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | ||
| Theorem | notzfaus 5305* | In the Separation Scheme zfauscl 5240, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.) (Proof shortened by BJ, 18-Nov-2023.) |
| ⊢ 𝐴 = {∅} & ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) ⇒ ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | intv 5306 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
| ⊢ ∩ V = ∅ | ||
| Axiom | ax-pow 5307* | Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. The variant axpow2 5309 uses explicit subset notation. A version using class notation is pwex 5322. (Contributed by NM, 21-Jun-1993.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfpow 5308* | Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpow2 5309* | A variant of the Axiom of Power Sets ax-pow 5307 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | ||
| Theorem | axpow3 5310* | A variant of the Axiom of Power Sets ax-pow 5307. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | ||
| Theorem | elALT2 5311* | Alternate proof of el 5384 using ax-9 2119 and ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | dtruALT2 5312* | Alternate proof of dtru 5383 using ax-pow 5307 instead of ax-pr 5374. See dtruALT 5330 for another proof using ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2370. (Revised by BJ, 31-May-2019.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | dtrucor 5313* | Corollary of dtru 5383. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 5314. (Contributed by NM, 27-Jun-2002.) |
| ⊢ 𝑥 = 𝑦 ⇒ ⊢ 𝑥 ≠ 𝑦 | ||
| Theorem | dtrucor2 5314 | The theorem form of the deduction dtrucor 5313 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad 5313. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 20-Oct-2007.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
| Theorem | dvdemo1 5315* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑦 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑧).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥) with 𝑥, 𝑦 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑦 ∈ 𝑥) with 𝑥, 𝑦 disjoint). Compare with dvdemo2 5316, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5316 for details on the "disjoint variable" mechanism. (The verb "bundle" to express this phenomenon was introduced by Raph Levien.) Note that dvdemo1 5315 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑧 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require ax-11 2158 nor ax-13 2370. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.) |
| ⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
| Theorem | dvdemo2 5316* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑧 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑦).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑥 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑧 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint). Compare with dvdemo1 5315, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5315 for details on the "disjoint variable" mechanism. Note that dvdemo2 5316 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑦 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require any of the auxiliary axioms ax-10 2142, ax-11 2158, ax-12 2178, ax-13 2370. (Contributed by NM, 1-Dec-2006.) Avoid ax-13 2370. (Revised by BJ, 13-Jan-2024.) |
| ⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
| Theorem | nfnid 5317 | A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 5312 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| ⊢ ¬ Ⅎ𝑥𝑥 | ||
| Theorem | nfcvb 5318 | The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of Ⅎ in the obvious way. This theorem is not true in a one-element domain, because then Ⅎ𝑥𝑦 and ∀𝑥𝑥 = 𝑦 will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2370. (New usage is discouraged.) |
| ⊢ (Ⅎ𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
| Theorem | vpwex 5319 | Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5320 from vpwex 5319. (Revised by BJ, 10-Aug-2022.) |
| ⊢ 𝒫 𝑥 ∈ V | ||
| Theorem | pwexg 5320 | Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | ||
| Theorem | pwexd 5321 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
| Theorem | pwex 5322 | Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ∈ V | ||
| Theorem | pwel 5323 | Quantitative version of pwexg 5320: the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) Remove use of ax-nul 5248 and ax-pr 5374 and shorten proof. (Revised by BJ, 13-Apr-2024.) |
| ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) | ||
| Theorem | abssexg 5324* | Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | ||
| Theorem | snexALT 5325 | Alternate proof of snex 5378 using Power Set (ax-pow 5307) instead of Pairing (ax-pr 5374). Unlike in the proof of zfpair 5363, Replacement (ax-rep 5221) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | p0ex 5326 | The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5327. (Contributed by NM, 23-Dec-1993.) |
| ⊢ {∅} ∈ V | ||
| Theorem | p0exALT 5327 | Alternate proof of p0ex 5326 which is quite different and longer if snexALT 5325 is expanded. (Contributed by NM, 23-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {∅} ∈ V | ||
| Theorem | pp0ex 5328 | The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
| ⊢ {∅, {∅}} ∈ V | ||
| Theorem | ord3ex 5329 | The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7675. (Contributed by NM, 2-May-2009.) |
| ⊢ {∅, {∅}, {∅, {∅}}} ∈ V | ||
| Theorem | dtruALT 5330* |
Alternate proof of dtru 5383 which requires more axioms but is shorter and
may be easier to understand. Like dtruALT2 5312, it uses ax-pow 5307 rather
than ax-pr 5374.
Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3563 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | axc16b 5331* | This theorem shows that Axiom ax-c16 38870 is redundant in the presence of Theorem dtruALT2 5312, which states simply that at least two things exist. This justifies the remark at mmzfcnd.html#twoness 5312 (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
| Theorem | eunex 5332 | Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) (Proof shortened by BJ, 2-Jan-2023.) |
| ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | ||
| Theorem | eusv1 5333* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | eusvnf 5334* | Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | ||
| Theorem | eusvnfb 5335* | Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | ||
| Theorem | eusv2i 5336* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | ||
| Theorem | eusv2nf 5337* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) | ||
| Theorem | eusv2 5338* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴) | ||
| Theorem | reusv1 5339* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ (∃𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv2lem1 5340* | Lemma for reusv2 5345. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | reusv2lem2 5341* | Lemma for reusv2 5345. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | reusv2lem3 5342* | Lemma for reusv2 5345. (Contributed by NM, 14-Dec-2012.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ V → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | reusv2lem4 5343* | Lemma for reusv2 5345. (Contributed by NM, 13-Dec-2012.) |
| ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | ||
| Theorem | reusv2lem5 5344* | Lemma for reusv2 5345. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 = 𝐶)) | ||
| Theorem | reusv2 5345* | Two ways to express single-valuedness of a class expression 𝐶(𝑦) that is constant for those 𝑦 ∈ 𝐵 such that 𝜑. The first antecedent ensures that the constant value belongs to the existential uniqueness domain 𝐴, and the second ensures that 𝐶(𝑦) is evaluated for at least one 𝑦. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∀𝑦 ∈ 𝐵 (𝜑 → 𝐶 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐵 𝜑) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | reusv3i 5346* | Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) | ||
| Theorem | reusv3 5347* | Two ways to express single-valuedness of a class expression 𝐶(𝑦). See reusv1 5339 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) ⇒ ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝐶 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) | ||
| Theorem | eusv4 5348* | Two ways to express single-valuedness of a class expression 𝐵(𝑦). (Contributed by NM, 27-Oct-2010.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | ||
| Theorem | alxfr 5349* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑦 𝐴 ∈ 𝐵 ∧ ∀𝑥∃𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
| Theorem | ralxfrd 5350* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd 5351* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr2d 5352* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfr2d 5353* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfrd2 5354* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 5350. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | rexxfrd2 5355* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 5351. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | ralxfr 5356* | Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | ralxfrALT 5357* | Alternate proof of ralxfr 5356 which does not use ralxfrd 5350. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rexxfr 5358* | Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) & ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) | ||
| Theorem | rabxfrd 5359* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 16-Jan-2012.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜒})) | ||
| Theorem | rabxfr 5360* | Membership in a restricted class abstraction after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005.) |
| ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) ⇒ ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) | ||
| Theorem | reuhypd 5361* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 7344. (Contributed by NM, 16-Jan-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | reuhyp 5362* | A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3714. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) & ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) ⇒ ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | ||
| Theorem | zfpair 5363 |
The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of
[TakeutiZaring] p. 15. In some
textbooks this is stated as a separate
axiom; here we show it is redundant since it can be derived from the
other axioms.
This theorem should not be referenced by any proof other than axprALT 5364. Instead, use zfpair2 5375 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | axprALT 5364* | Alternate proof of axpr 5369. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | axprlem1 5365* | Lemma for axpr 5369. There exists a set to which all empty sets belong. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
| ⊢ ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥) | ||
| Theorem | axprlem2 5366* | Lemma for axpr 5369. There exists a set to which all sets whose only members are empty sets belong. (Contributed by Rohan Ridenour, 9-Aug-2023.) (Revised by BJ, 13-Aug-2023.) |
| ⊢ ∃𝑥∀𝑦(∀𝑧 ∈ 𝑦 ∀𝑤 ¬ 𝑤 ∈ 𝑧 → 𝑦 ∈ 𝑥) | ||
| Theorem | axprlem3 5367* | Lemma for axpr 5369. Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem4 5368* | Lemma for axpr 5369. If an existing set of empty sets corresponds to one element of the pair, then the element is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) |
| ⊢ ∃𝑠∀𝑛𝜑 & ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) & ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) ⇒ ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) | ||
| Theorem | axpr 5369* |
Unabbreviated version of the Axiom of Pairing of ZF set theory, derived
as a theorem from the other axioms.
This theorem should not be referenced by any proof. Instead, use ax-pr 5374 below so that the uses of the Axiom of Pairing can be more easily identified. For a shorter proof using ax-ext 2701, see axprALT 5364. (Contributed by NM, 14-Nov-2006.) Remove dependency on ax-ext 2701. (Revised by Rohan Ridenour, 10-Aug-2023.) (Proof shortened by BJ, 13-Aug-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) Use ax-pr 5374 instead. (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | axprlem3OLD 5370* | Obsolete version of axprlem3 5367 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem4OLD 5371* | Obsolete version of axprlem4 5368 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprlem5OLD 5372* | Obsolete version of axprlem4 5368 as of 18-Sep-2025. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) | ||
| Theorem | axprOLD 5373* | Obsolete version of axpr 5369 as of 18-Sep-2025. (Contributed by NM, 14-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Axiom | ax-pr 5374* | The Axiom of Pairing of ZF set theory. It was derived as Theorem axpr 5369 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 14-Nov-2006.) |
| ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | ||
| Theorem | zfpair2 5375 | Derive the abbreviated version of the Axiom of Pairing from ax-pr 5374. See zfpair 5363 for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006.) |
| ⊢ {𝑥, 𝑦} ∈ V | ||
| Theorem | vsnex 5376 | A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| ⊢ {𝑥} ∈ V | ||
| Theorem | snexg 5377 | A singleton built on a set is a set. Special case of snex 5378 which does not require ax-nul 5248 and is intuitionistically valid. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) Extract from snex 5378 and shorten proof. (Revised by BJ, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
| Theorem | snex 5378 | A singleton is a set. Theorem 7.12 of [Quine] p. 51, proved using Extensionality, Separation, Null Set, and Pairing. See also snexALT 5325. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 19-May-2013.) |
| ⊢ {𝐴} ∈ V | ||
| Theorem | prex 5379 | The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51. By virtue of its definition, an unordered pair remains a set (even though no longer a pair) even when its components are proper classes (see prprc 4721), so we can dispense with hypotheses requiring them to be sets. (Contributed by NM, 15-Jul-1993.) |
| ⊢ {𝐴, 𝐵} ∈ V | ||
| Theorem | exel 5380* |
There exist two sets, one a member of the other.
This theorem looks similar to el 5384, but its meaning is different. It only depends on the axioms ax-mp 5 to ax-4 1809, ax-6 1967, and ax-pr 5374. This theorem does not exclude that these two sets could actually be one single set containing itself. That two different sets exist is proved by exexneq 5381. (Contributed by SN, 23-Dec-2024.) |
| ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
| Theorem | exexneq 5381* | There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2370. (Revised by BJ, 31-May-2019.) Avoid ax-8 2111. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5374 instead of ax-pow 5307. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5383. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | ||
| Theorem | exneq 5382* |
Given any set (the "𝑦 " in the statement), there
exists a set not
equal to it.
The same statement without disjoint variable condition is false, since we do not have ∃𝑥¬ 𝑥 = 𝑥. This theorem is proved directly from set theory axioms (no class definitions) and does not depend on ax-ext 2701, ax-sep 5238, or ax-pow 5307 nor auxiliary logical axiom schemes ax-10 2142 to ax-13 2370. See dtruALT 5330 for a shorter proof using more axioms, and dtruALT2 5312 for a proof using ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2370. (Revised by BJ, 31-May-2019.) Avoid ax-8 2111. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5374 instead of ax-pow 5307. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof of dtru 5383. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | dtru 5383* | Given any set (the "𝑦 " in the statement), not all sets are equal to it. The same statement without disjoint variable condition is false since it contradicts stdpc6 2028. The same comments and revision history concerning axiom usage as in exneq 5382 apply. See dtruALT 5330 and dtruALT2 5312 for alternate proofs avoiding ax-pr 5374. (Contributed by NM, 7-Nov-2006.) Extract exneq 5382 as an intermediate result. (Revised by BJ, 2-Jan-2025.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | el 5384* | Any set is an element of some other set. See elALT 5387 for a shorter proof using more axioms, and see elALT2 5311 for a proof that uses ax-9 2119 and ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Use ax-pr 5374 instead of ax-9 2119 and ax-pow 5307. (Revised by BTernaryTau, 2-Dec-2024.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | sels 5385* | If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5387. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5238, ax-nul 5248, ax-pow 5307. (Revised by BTernaryTau, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | selsALT 5386* | Alternate proof of sels 5385, requiring ax-sep 5238 but not using el 5384 (which is proved from it as elALT 5387). (especially when the proof of el 5384 is inlined in sels 5385). (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5387. (Revised by BJ, 3-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
| Theorem | elALT 5387* | Alternate proof of el 5384, shorter but requiring ax-sep 5238. (Contributed by NM, 4-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
| Theorem | dtruOLD 5388* | Obsolete version of dtru 5383 as of 1-Jan-2025. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2370. (Revised by BJ, 31-May-2019.) Avoid ax-12 2178. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5374 instead of ax-pow 5307. (Revised by BTernaryTau, 3-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
| Theorem | snelpwg 5389 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) Put in closed form and avoid ax-nul 5248. (Revised by BJ, 17-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵)) | ||
| Theorem | snelpwi 5390 | If a set is a member of a class, then the singleton of that set is a member of the powerclass of that class. (Contributed by Alan Sare, 25-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpwiOLD 5391 | Obsolete version of snelpwi 5390 as of 17-Jan-2025. (Contributed by NM, 28-May-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | snelpw 5392 | A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ 𝒫 𝐵) | ||
| Theorem | prelpw 5393 | An unordered pair of two sets is a member of the powerclass of a class if and only if the two sets are members of that class. (Contributed by AV, 8-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | ||
| Theorem | prelpwi 5394 | If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) | ||
| Theorem | rext 5395* | A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) | ||
| Theorem | sspwb 5396 | The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | ||
| Theorem | unipw 5397 | A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| ⊢ ∪ 𝒫 𝐴 = 𝐴 | ||
| Theorem | univ 5398 | The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| ⊢ ∪ V = V | ||
| Theorem | pwtr 5399 | A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) | ||
| Theorem | ssextss 5400* | An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |