![]() |
Metamath
Proof Explorer Theorem List (p. 54 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Axiom | ax-sep 5301* |
Axiom scheme of separation. This is an axiom scheme of Zermelo and
Zermelo-Fraenkel set theories.
It was derived as axsep 5300 above and is therefore redundant in ZF set theory, which contains ax-rep 5284 as an axiom (contrary to Zermelo set theory). We state it as a separate axiom here so that some of its uses can be identified more easily. Some textbooks present the axiom scheme of separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger axiom scheme of replacement (which is not part of Zermelo set theory). The axiom scheme of separation is a weak form of Frege's axiom scheme of (unrestricted) comprehension, in that it conditions it with the condition 𝑥 ∈ 𝑧, so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 3788. In some texts, this scheme is called "Aussonderung" (German for "separation") or "Subset Axiom". The variable 𝑥 can occur in the formula 𝜑, which in textbooks is often written 𝜑(𝑥). To specify this in the Metamath language, we omit the distinct variable condition ($d) that 𝑥 not occur in 𝜑. For a version using a class variable, see zfauscl 5303, which requires the axiom of extensionality as well as the axiom scheme of separation for its derivation. If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5368 shows (showing the necessity of that condition in zfauscl 5303). Scheme Sep of [BellMachover] p. 463. (Contributed by NM, 11-Sep-2006.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Theorem | axsepg 5302* | A more general version of the axiom scheme of separation ax-sep 5301, where variable 𝑧 can also occur (in addition to 𝑥) in formula 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version is derived from the more restrictive ax-sep 5301 with no additional set theory axioms. Note that it was also derived from ax-rep 5284 but without ax-sep 5301 as axsepgfromrep 5299. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-12 2174 and ax-13 2374 and shorten proof. (Revised by BJ, 6-Oct-2019.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Theorem | zfauscl 5303* |
Separation Scheme (Aussonderung) using a class variable. To derive this
from ax-sep 5301, we invoke the Axiom of Extensionality
(indirectly via
vtocl 3557), which is needed for the justification of
class variable
notation.
If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5368 shows. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | sepexlem 5304* | Lemma for sepex 5305. Use sepex 5305 instead. (Contributed by Matthew House, 19-Sep-2025.) (New usage is discouraged.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) | ||
Theorem | sepex 5305* | Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep 5301. Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by Matthew House, 19-Sep-2025.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) | ||
Theorem | sepexi 5306* | Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep 5301. Inference associated with sepex 5305. (Contributed by NM, 21-Jun-1993.) Generalize conclusion, extract closed form, and avoid ax-9 2115. (Revised by Matthew House, 19-Sep-2025.) |
⊢ ∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) ⇒ ⊢ ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑) | ||
Theorem | bm1.3iiOLD 5307* | Obsolete version of sepexi 5306 as of 18-Sep-2025. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
Theorem | ax6vsep 5308* | Derive ax6v 1965 (a weakened version of ax-6 1964 where 𝑥 and 𝑦 must be distinct), from Separation ax-sep 5301 and Extensionality ax-ext 2705. See ax6 2386 for the derivation of ax-6 1964 from ax6v 1965. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
Theorem | axnulALT 5309* | Alternate proof of axnul 5310, proved from propositional calculus, ax-gen 1791, ax-4 1805, sp 2180, and ax-rep 5284. To check this, replace sp 2180 with the obsolete axiom ax-c5 38864 in the proof of axnulALT 5309 and type the Metamath program "MM> SHOW TRACE_BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Theorem | axnul 5310* |
The Null Set Axiom of ZF set theory: there exists a set with no
elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks,
this is presented as a separate axiom; here we show it can be derived
from Separation ax-sep 5301. This version of the Null Set Axiom tells us
that at least one empty set exists, but does not tell us that it is
unique - we need the Axiom of Extensionality to do that (see nulmo 2710).
This proof, suggested by Jeff Hoffman, uses only ax-4 1805 and ax-gen 1791 from predicate calculus, which are valid in "free logic" i.e. logic holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc] p. 277). Thus, our ax-sep 5301 implies the existence of at least one set. Note that Kunen's version of ax-sep 5301 (Axiom 3 of [Kunen] p. 11) does not imply the existence of a set because his is universally closed, i.e., prefixed with universal quantifiers to eliminate all free variables. His existence is provided by a separate axiom stating ∃𝑥𝑥 = 𝑥 (Axiom 0 of [Kunen] p. 10). See axnulALT 5309 for a proof directly from ax-rep 5284. This theorem should not be referenced by any proof. Instead, use ax-nul 5311 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Axiom | ax-nul 5311* | The Null Set Axiom of ZF set theory. It was derived as axnul 5310 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 7-Aug-2003.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Theorem | 0ex 5312 | The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 5311. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ ∅ ∈ V | ||
Theorem | al0ssb 5313* | The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.) |
⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) | ||
Theorem | sseliALT 5314 | Alternate proof of sseli 3990 illustrating the use of the weak deduction theorem to prove it from the inference sselii 3991. (Contributed by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
Theorem | csbexg 5315 | The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.) |
⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | ||
Theorem | csbex 5316 | The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V | ||
Theorem | unisn2 5317 | A version of unisn 4930 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.) |
⊢ ∪ {𝐴} ∈ {∅, 𝐴} | ||
Theorem | nalset 5318* | No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.) Remove use of ax-12 2174 and ax-13 2374. (Revised by BJ, 31-May-2019.) |
⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
Theorem | vnex 5319 | The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
⊢ ¬ ∃𝑥 𝑥 = V | ||
Theorem | vprc 5320 | The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
⊢ ¬ V ∈ V | ||
Theorem | nvel 5321 | The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
⊢ ¬ V ∈ 𝐴 | ||
Theorem | inex1 5322 | Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
Theorem | inex2 5323 | Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
Theorem | inex1g 5324 | Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
Theorem | inex2g 5325 | Sufficient condition for an intersection to be a set. Commuted form of inex1g 5324. (Contributed by Peter Mazsa, 19-Dec-2018.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) | ||
Theorem | ssex 5326 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5301 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
Theorem | ssexi 5327 | The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | ssexg 5328 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | ssexd 5329 | A subclass of a set is a set. Deduction form of ssexg 5328. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
Theorem | abexd 5330* | Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.) |
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ∈ V) | ||
Theorem | abex 5331* | Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5330. (Contributed by AV, 19-Apr-2025.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ 𝜑} ∈ V | ||
Theorem | prcssprc 5332 | The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) | ||
Theorem | sselpwd 5333 | Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | difexg 5334 | Existence of a difference. (Contributed by NM, 26-May-1998.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | ||
Theorem | difexi 5335 | Existence of a difference, inference version of difexg 5334. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∖ 𝐵) ∈ V | ||
Theorem | difexd 5336 | Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) | ||
Theorem | zfausab 5337* | Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | elpw2g 5338 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | elpw2 5339 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | elpwi2 5340 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
Theorem | rabelpw 5341* | A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | ||
Theorem | rabexg 5342* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | rabexgOLD 5343* | Obsolete version of rabexg 5342 as of 24-Jul-2025). (Contributed by NM, 23-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | rabex 5344* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
Theorem | rabexd 5345* | Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5346. (Contributed by AV, 16-Jul-2019.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | rabex2 5346* | Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐵 ∈ V | ||
Theorem | rab2ex 5347* | A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V | ||
Theorem | elssabg 5348* | Membership in a class abstraction involving a subset. Unlike elabg 3676, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) | ||
Theorem | intex 5349 | The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | ||
Theorem | intnex 5350 | If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) | ||
Theorem | intexab 5351 | The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | ||
Theorem | intexrab 5352 | The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | iinexg 5353* | The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
Theorem | intabs 5354* | Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = ∩ {𝑦 ∣ 𝜓} → (𝜑 ↔ 𝜒)) & ⊢ (∩ {𝑦 ∣ 𝜓} ⊆ 𝐴 ∧ 𝜒) ⇒ ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑} | ||
Theorem | inuni 5355* | The intersection of a union ∪ 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
⊢ (∪ 𝐴 ∩ 𝐵) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)} | ||
Theorem | axpweq 5356* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 5370 is not used by the proof. When ax-pow 5370 is assumed and 𝐴 is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if 𝐴 is a set (see pwexr 7783). (Contributed by NM, 22-Jun-2009.) |
⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) | ||
Theorem | pwnss 5357 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Proof shortened by BJ, 24-Jul-2025.) |
⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | ||
Theorem | pwne 5358 | No set equals its power set. The sethood antecedent is necessary; compare pwv 4908. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) | ||
Theorem | difelpw 5359 | A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) | ||
Theorem | class2set 5360* | The class of elements of 𝐴 "such that 𝐴 is a set" is a set. That class is equal to 𝐴 when 𝐴 is a set (see class2seteq 3712) and to the empty set when 𝐴 is a proper class. (Contributed by NM, 16-Oct-2003.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V | ||
Theorem | 0elpw 5361 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
⊢ ∅ ∈ 𝒫 𝐴 | ||
Theorem | pwne0 5362 | A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
⊢ 𝒫 𝐴 ≠ ∅ | ||
Theorem | 0nep0 5363 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
⊢ ∅ ≠ {∅} | ||
Theorem | 0inp0 5364 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
Theorem | unidif0 5365 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
Theorem | eqsnuniex 5366 | If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | ||
Theorem | iin0 5367* | An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | ||
Theorem | notzfaus 5368* | In the Separation Scheme zfauscl 5303, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.) (Proof shortened by BJ, 18-Nov-2023.) |
⊢ 𝐴 = {∅} & ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) ⇒ ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | intv 5369 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
⊢ ∩ V = ∅ | ||
Axiom | ax-pow 5370* | Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. The variant axpow2 5372 uses explicit subset notation. A version using class notation is pwex 5385. (Contributed by NM, 21-Jun-1993.) |
⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | zfpow 5371* | Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpow2 5372* | A variant of the Axiom of Power Sets ax-pow 5370 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | ||
Theorem | axpow3 5373* | A variant of the Axiom of Power Sets ax-pow 5370. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | ||
Theorem | elALT2 5374* | Alternate proof of el 5447 using ax-9 2115 and ax-pow 5370 instead of ax-pr 5437. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
Theorem | dtruALT2 5375* | Alternate proof of dtru 5446 using ax-pow 5370 instead of ax-pr 5437. See dtruALT 5393 for another proof using ax-pow 5370 instead of ax-pr 5437. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2374. (Revised by BJ, 31-May-2019.) Avoid ax-12 2174. (Revised by Rohan Ridenour, 9-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | dtrucor 5376* | Corollary of dtru 5446. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 5377. (Contributed by NM, 27-Jun-2002.) |
⊢ 𝑥 = 𝑦 ⇒ ⊢ 𝑥 ≠ 𝑦 | ||
Theorem | dtrucor2 5377 | The theorem form of the deduction dtrucor 5376 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad 5376. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 20-Oct-2007.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
Theorem | dvdemo1 5378* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑦 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑧).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥) with 𝑥, 𝑦 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑦 ∈ 𝑥) with 𝑥, 𝑦 disjoint). Compare with dvdemo2 5379, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5379 for details on the "disjoint variable" mechanism. (The verb "bundle" to express this phenomenon was introduced by Raph Levien.) Note that dvdemo1 5378 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑧 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require ax-11 2154 nor ax-13 2374. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.) |
⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
Theorem | dvdemo2 5379* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑧 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑦).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑥 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑧 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint). Compare with dvdemo1 5378, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5378 for details on the "disjoint variable" mechanism. Note that dvdemo2 5379 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑦 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require any of the auxiliary axioms ax-10 2138, ax-11 2154, ax-12 2174, ax-13 2374. (Contributed by NM, 1-Dec-2006.) Avoid ax-13 2374. (Revised by BJ, 13-Jan-2024.) |
⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
Theorem | nfnid 5380 | A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 5375 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ ¬ Ⅎ𝑥𝑥 | ||
Theorem | nfcvb 5381 | The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of Ⅎ in the obvious way. This theorem is not true in a one-element domain, because then Ⅎ𝑥𝑦 and ∀𝑥𝑥 = 𝑦 will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2374. (New usage is discouraged.) |
⊢ (Ⅎ𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | vpwex 5382 | Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5383 from vpwex 5382. (Revised by BJ, 10-Aug-2022.) |
⊢ 𝒫 𝑥 ∈ V | ||
Theorem | pwexg 5383 | Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | ||
Theorem | pwexd 5384 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
Theorem | pwex 5385 | Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝒫 𝐴 ∈ V | ||
Theorem | pwel 5386 | Quantitative version of pwexg 5383: the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) Remove use of ax-nul 5311 and ax-pr 5437 and shorten proof. (Revised by BJ, 13-Apr-2024.) |
⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) | ||
Theorem | abssexg 5387* | Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | ||
Theorem | snexALT 5388 | Alternate proof of snex 5441 using Power Set (ax-pow 5370) instead of Pairing (ax-pr 5437). Unlike in the proof of zfpair 5426, Replacement (ax-rep 5284) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝐴} ∈ V | ||
Theorem | p0ex 5389 | The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5390. (Contributed by NM, 23-Dec-1993.) |
⊢ {∅} ∈ V | ||
Theorem | p0exALT 5390 | Alternate proof of p0ex 5389 which is quite different and longer if snexALT 5388 is expanded. (Contributed by NM, 23-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {∅} ∈ V | ||
Theorem | pp0ex 5391 | The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
⊢ {∅, {∅}} ∈ V | ||
Theorem | ord3ex 5392 | The ordinal number 3 is a set, proved without the Axiom of Union ax-un 7753. (Contributed by NM, 2-May-2009.) |
⊢ {∅, {∅}, {∅, {∅}}} ∈ V | ||
Theorem | dtruALT 5393* |
Alternate proof of dtru 5446 which requires more axioms but is shorter and
may be easier to understand. Like dtruALT2 5375, it uses ax-pow 5370 rather
than ax-pr 5437.
Assuming that ZF set theory is consistent, we cannot prove this theorem unless we specify that 𝑥 and 𝑦 be distinct. Specifically, Theorem spcev 3605 requires that 𝑥 must not occur in the subexpression ¬ 𝑦 = {∅} in step 4 nor in the subexpression ¬ 𝑦 = ∅ in step 9. The proof verifier will require that 𝑥 and 𝑦 be in a distinct variable group to ensure this. You can check this by deleting the $d statement in set.mm and rerunning the verifier, which will print a detailed explanation of the distinct variable violation. (Contributed by NM, 15-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | axc16b 5394* | This theorem shows that Axiom ax-c16 38873 is redundant in the presence of Theorem dtruALT2 5375, which states simply that at least two things exist. This justifies the remark at mmzfcnd.html#twoness 5375 (which links to this theorem). (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 7-Nov-2006.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | eunex 5395 | Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) (Proof shortened by BJ, 2-Jan-2023.) |
⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | ||
Theorem | eusv1 5396* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | ||
Theorem | eusvnf 5397* | Even if 𝑥 is free in 𝐴, it is effectively bound when 𝐴(𝑥) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | ||
Theorem | eusvnfb 5398* | Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | ||
Theorem | eusv2i 5399* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | ||
Theorem | eusv2nf 5400* | Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |