|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axprlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for axpr 5427. There exists a set to which all empty sets belong. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| axprlem1 | ⊢ ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-pow 5365 | . . 3 ⊢ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤) → 𝑦 ∈ 𝑥) | |
| 2 | pm2.21 123 | . . . . . . . 8 ⊢ (¬ 𝑧 ∈ 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) | |
| 3 | 2 | alimi 1811 | . . . . . . 7 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑦 → ∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) | 
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑤 → (∀𝑧 ¬ 𝑧 ∈ 𝑦 → ∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤))) | 
| 5 | 4 | imim1d 82 | . . . . 5 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑤 → ((∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤) → 𝑦 ∈ 𝑥) → (∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥))) | 
| 6 | 5 | alimdv 1916 | . . . 4 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑤 → (∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤) → 𝑦 ∈ 𝑥) → ∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥))) | 
| 7 | 6 | eximdv 1917 | . . 3 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑤 → (∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤) → 𝑦 ∈ 𝑥) → ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥))) | 
| 8 | 1, 7 | mpi 20 | . 2 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑤 → ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥)) | 
| 9 | ax-nul 5306 | . 2 ⊢ ∃𝑤∀𝑧 ¬ 𝑧 ∈ 𝑤 | |
| 10 | 8, 9 | exlimiiv 1931 | 1 ⊢ ∃𝑥∀𝑦(∀𝑧 ¬ 𝑧 ∈ 𝑦 → 𝑦 ∈ 𝑥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-nul 5306 ax-pow 5365 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 | 
| This theorem is referenced by: axprlem2 5424 axpr 5427 axprlem4OLD 5429 | 
| Copyright terms: Public domain | W3C validator |